Lectures 26

» Finish up disks
= Parallelism

Hard drives

The ugly guts of a hard disk.

— Data is stored on double-sided magnetic disks called platters.
— Each platter is arranged like a record, with many concentric tracks.
— Tracks are further divided into individual sectors, which are the basic

unit of data transfer.

— Each surface has a read/write head like the arm on a record player,
but all the heads are connected and move together.

A 75GB IBM Deskstar has roughly:
— 5 platters (10 surfaces),
— 27,000 tracks per surface,
— 512 sectors per track, and
— 512 bytes per sector.

Accessing data on a hard disk

= Accessing a sector on a track on a hard disk takes a lot of time!
— Seek time measures the delay for the disk head to reach the track.
— A rotational delay accounts for the time to get to the right sector.
— The transfer time is how long the actual data read or write takes.

— There may be additional overhead for the operating system or the
controller hardware on the hard disk drive.

= Rotational speed, measured in revolutions per minute or RPM, partially
determines the rotational delay and transfer time.

Tracks

N %g
\ J

o=

Sectors

Track

Estimating disk latencies (seek time)

= Manufacturers often report average seek times of 8-10ms.

— These times average the time to seek from any track to any other
track.

» |n practice, seek times are often much better.

— For example, if the head is already on or near the desired track, then
seek time is much smaller. In other words, locality is important!

— Actual average seek times are often just 2-3ms.

Estimating Disk Latencies (rotational latency)

= Once the head is in place, we need to wait until the right sector is
underneath the head.

— This may require as little as no time (reading consecutive sectors) or
as much as a full rotation (just missed it).

— On average, for random reads/writes, we can assume that the disk
spins halfway on average.

= Rotational delay depends partly on how fast the disk platters spin.
Average rotational delay = 0.5 x rotations x rotational speed
— For example, a 5400 RPM disk has an average rotational delay of:

0.5 rotations / (5400 rotations/minute) = 5.55ms

Estimating disk times

The overall response time is the sum of the seek
time, rotational delay, transfer time, and overhead.

Assume a disk has the following specifications.
— An average seek time of 9ms
— A 5400 RPM rotational speed
— A 10MB/s average transfer rate
— 2ms of overheads
How long does it take to read a random 1,024 byte sector?
— The average rotational delay is 5.55ms.
— The transfer time will be about (1024 bytes / 10 MB/s) = 0.1ms.

— The response time is then 9ms + 5.55ms + 0.1ms + 2ms = 16.7ms.
That’s 16,700,000 cycles for a 1GHz processor!

One possible measure of throughput would be the humber of random
sectors that can be read in one second.

(1 sector / 16.7ms) x (1000ms / 1s) = 60 sectors/second.

Estimating disk times

» The overall response time is the sum of the seek
time, rotational delay, transfer time, and overhead.

= Assume a disk has the following specifications.
— An average seek time of 3ms
— A 7200 RPM rotational speed
— A 10MB/s average transfer rate
— 2ms of overheads
= How long does it take to read a random 1,024 byte sector?
— The average rotational delay is:
— The transfer time will be about:
— The response time is then:

= How long would it take to read a whole track (512 sectors) selected at
random, if the sectors could be read in any order?

Parallel 1/0

= Many hardware systems use parallelism for increased speed.

— Pipelined processors include extra hardware so they can execute
multiple instructions simultaneously.

— Dividing memory into banks lets us access several words at once.

» A redundant array of inexpensive disks or RAID system allows access to
several hard drives at once, for increased bandwidth.

— The picture below shows a single data file with fifteen sectors
denoted A-O, which are “striped” across four disks.

— This is reminiscent of interleaved main memories from last week.

RAID 0

COPYRIGHT & 1556, 1957, 1956, 1955 ADVANCED COMPUTER & NETWORE CORPORATION

Pipelining vs. Parallel processing

= In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where each
piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single
functional unit

= We will briefly introduce the key ideas behind parallel processing
— 1instruction level parallelism
— data-level parallelism
— thread-level parallelism

Exploiting Parallelism

Of the computing problems for which performance is important, many
have inherent parallelism

Best example: computer games
— Graphics, physics, sound, Al etc. can be done separately
— Furthermore, there is often parallelism within each of these:
e Each pixel on the screen’s color can be computed independently
e Non-contacting objects can be updated/simulated independently
 Artificial intelligence of non-human entities done independently

Another example: Google queries

— Every query is independent
— Google is read-only!!

10

add
or
lw
addi
sub

add
or
lw

sub
addi

Parallelism at the Instruction Level

$2 <- $3, $4
$2 <- $2, $4
$6 <- 0($4)
$7 <- $6, 0x5
$8 <- $8, $4

$2 <- $3, $4
$5<- $2, $4
$6 <- 0($4)
$8 <- $8, $4
$7 <- $6, 0x5

Dependences?
RAW
WAW
WAR

When can we reorder instructions?

When should we reorder instructions?

Surperscalar Processors:
Multiple instructions executing in
parallel at *same* stage

11

000 Execution Hardware

Insiruction ioich
ang decods uni

|

I

Hiesarvahion
statian

Hesmarvahcn
slatian

|

Ir-oroar issuc

Rasarsghion
s:afion

Hesmarvahcn
slatiar

Functicnal Eloatin Lomd! ,
B & Ok-of-order coecubo
unis Integer . a Stora

Commi
winik

Im=prosar coimmik

12

Exploiting Parallelism at the Data Level

Consider adding together two arrays:

void
array add(int A[],
int 1;
for (1 = 0
C[i] = A]

}

int B[], int C[], 1nt length) {

; 1 < length ; ++ 1) {
i] + B[1];

Operating on one element at a time

13

Exploiting Parallelism at the Data Level

Consider adding together two arrays:

volid

array add(int A[],

int 1;
for (1
Cl[1i]

}

= A

0
[

;1
i] +

int B[], int C[], 1nt length) {

< length ; ++ 1) {

B[1];

Operating on one element at a time

i

14

Exploiting Parallelism at the Data Level (SIMD)

Consider adding together two arrays:

void
array add(int A[], int B[], int C[], 1nt length) {
int 1;
for (1 = 0 ; 1 < length ; ++ 1) {
Cl[i] = A[1] + B[i1];

Operate on MULTIPLE elements

Single Instruction,
Multiple Data (SIMD)

15

Intel SSE/SSE2 as an example of SIMD

e Added new 128 bit registers (XMMO - XMM7), each can store

— 4 single precision FP values (SSE) 4*32b
— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4*32b
— 1 128-bit integer value (SSE2) 1*128b
4.0 (32 bits) 4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)
+ -1.5 (32 bits) 2.0 (32 bits) 1.7 (32 bits) 2.3 (32 bits)
2.5 (32 bits) 6.0 (32 bits) 5.2 (32 bits) 0.3 (32 bits)

16

Is it always that easy?

= Not always... a more challenging example:

unsigned
sum array (unsigned *array, 1int length) {
int total = 0;
for (int 1 = 0 ; 1 < length ; ++ 1) {
total += arrayl[1i];
}

return total;

= |s there parallelism here?

We first need to restructure the code

unsigned
sum arrayZ (unsigned *array, 1int length) {
unsigned total, 1;

unsigned temp([4] = {0, 0, 0, O0};
for (1 = 0 ; 1 < length & ~0x3 ; 1 += 4) {
temp[0] += arrayl[i];
temp[l] += array[i+l];
temp[2] += arrayl[1+2];
temp[3] += arrayl[1+3];

total = temp[0] + temp[l] + temp[2] + temp[3];
for (; 1 < length ; ++ 1) {

total += arrayl[i];
}

return total;

18

Then we can write SIMD code for the hot part

unsigned
sum arrayZ (unsigned *array, 1int length) {
unsigned total, 1;
unsigned temp([4] = {0, 0, 0, O0};
for (1 =0 ; i < length & ~0x3 ; i += 4) {
temp[0] += array[i];
temp[l] += array[i+l];
temp[2] += array[i+2];
temp[3] += array[i+3];
}
total = temp[0] + temp[l] + temp[2] + temp[3];
for (; 1 < length ; ++ 1) {
total += arrayl[i];
}

return total;

19

Thread level parallelism: Multi-Core Processors

Two (or more) complete processors, fabricated on the same silicon chip
Execute instructions from two (or more) programs/threads at same time

: IBM Powerbh

20

Multi-Cores are Everywhere

| Intel Core Duo in Macs, etc.: 2 x86 processors on same chip

- -
Core Duc

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric
multi-core with 9 cores (1 general-purpose, 8
special purpose SIMD processors)

21

Why Multi-cores Now?

= Number of transistors we can put on a chip growing exponentially...

transistors
Intel = [taniumE Procossor
telf Pentium® 4 Processor 4 | 100,000,000
Intal® Pentumn 1l Processor

Intel ” Penturm® i Procossor
Intaln Pantium it Procossor
Inteldfd™ Procossor

1 10,000,000

1970 1975 1980 1985 1990 1995 2000 2005

22

... and performance growing too...

40

Pentium 4 4
15 (Cedarmill}
30 power = perf * 1.75
25 Pentium 4
B (Willamette) *
22
o
15
0 Pentium Pro.4
5
486 * Pentium
D '
0 2 4 3] 8

Scalar Performance

But power is growing even faster!!
— Power has become limiting factor in current chips

23

As programmers, do we care?

What happens if we run a program on a multi-core?

void
array add(int A[], int B[], int C[], int length)

int 1i;
for (i = 0 ; 1 < length ; ++i) {
C[i] = A[1] + B[1]>;

}

{

24

What if we want a program to run on both processors?

We have to explicitly tell the machine exactly how to do this
— This is called parallel programming or concurrent programming

There are many parallel/concurrent programming models

— We will look at a relatively simple one: fork-join parallelism
— In CSE 303, you saw a little about threads and explicit synchronization

—E-

{ parallel region } { parallel region }

master
thread

25

Fork/Join Logical Example

1.Fork N-1 threads
2.Break work into N pieces (and do it)
3.Join (N-1) threads

void
array add(int A[], int B[], int C[], int length) ({
cpu num = fork(N-1);

int 1i;
for (1 = cpu num ; 1 < length ; 1 += N) {
C[i] = A[i] + B[il;
}
join();
}
: . . A
How good is this with caches? B:

Memnﬁr

How does this help performance?

= Parallel speedup measures improvement from parallelization:

time for best serial version
time for version with p processors

speedup(p) =

= What can we realistically expect?

A L]

-
=
-

v
fr.
e
."'-.Ih'—-r__."'

|_speedup(p)

ot

L
L p = number of processors
27

Reason #1: Amdahl’s Law

In general, the whole computation is not (easily) parallelizable

master
thread

{ parallel region }

Serial regions

28

Reason #1: Amdahl’s Law

= Suppose a program takes 1 unit of time to execute serially
= A fraction of the program, s, is inherently serial (unparallelizable)

-+— Time on a single processor ————=

S (1-s) |
ul New Execution 1-s

Time on a Time
-4— parallel — - P

machine

= For example, consider a program that, when executing on one processor, spends
10% of its time in a non-parallelizable region. How much faster will this program
run on a 3-processor system?

New Execution _ IT . AT = Speedup =

Time 3

= What is the maximum speedup from parallelization?

29

Reason #2: Overhead

void

array add(int A[], int B[], int C[], int length)
cpu num = fork (N-1);

int 1i;

for (1 = cpu num ; 1 < length ; 1 += N) {
C[i] = A[i] + BI[i];

}

join();

— Forking and joining is not instantaneous
« Involves communicating between processors
« May involve calls into the operating system
— Depends on the implementation

New Execution 1-s

Time P

+ s + overhead(P)

30

Programming Explicit Thread-level Parallelism

= As noted previously, the programmer must specify how to parallelize
= But, want path of least effort

= Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

= Want a way to take serial code and say “Do this in parallel!” without:
— Having to manage the synchronization between processors
— Having to know a priori how many processors the system has
— Deciding exactly which processor does what
— Replicate the private state of each thread

= OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.

31

Performance Optimization

Until you are an expert, first write a working version of the program
Then, and only then, begin tuning, first collecting data, and iterate
— Otherwise, you will likely optimize what doesn’t matter

3. Analyze Data
1. Create a 2. Collect and |dentity

Benchmark Data Performance
Problems

2,18
Problem 4. Fix the
Fixed? problems In your

code or system

G. Are

performance
requirements

“We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.” -- Sir Tony Hoare

32

Using tools to do instrumentation

Two GNU tools integrated into the GCC C compiler

Gprof: The GNU profiler
— Compile with the -pg flag

e This flag causes gcc to keep track of which pieces of source code
correspond to which chunks of object code and links in a profiling

signal handler.

— Run as normal; program requests the operating system to periodically
send it signals; the signal handler records what instruction was
executing when the sighal was received in a file called gmon.out

— Display results using gprof command
e Shows how much time is being spent in each function.
« Shows the calling context (the path of function calls) to the hot
spot.

33

Example gprof output

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
81.89 4.16 4.16 37913758 0.00 0.00 cache access
16.14 4.98 0.82 1 0.82 5.08 sim main
1.38 5.05 0.07 6254582 0.00 0.00 wupdate way list
0.59 5.08 0.03 1428644 0.00 0.00 dll access fn
0.00 5.08 0.00 711226 0.00 0.00 dl2 access fn
0.00 5.08 0.00 256830 0.00 0.00 vyylex

Over 80% of time spent in one function

Provides calling context (main calls sim main calls cache access) of hot spot

index % time self <children called name
0.82 4.26 1/1 main [2]
[1] 100.0 0.82 4.26 1 sim main [1]
4.18 0.07 306418454/36484188 cache _access <cycle 1> [4]
0.00 0.01 10/10 sys_syscall [9]
0.00 0.00 2935/2967 mem translate [16]
0.00 0.00 2794/2824 mem newpage [18]

34

Using tools for instrumentation (cont.)

Gprof didn’t give us information on where in the function we were
spending time. (cache access is a big function; still needle in

haystack)
Gcov: the GNU coverage tool
— Compile/link with the -fprofile-arcs -ftest-coverage options

« Adds code during compilation to add counters to every control
flow edge (much like our by hand instrumentation) to compute
how frequently each block of code gets executed.

— Run as normal
— For each xyz.c file an xyz.gdna and xyz.gcno file are generated
— Post-process with gcov xyz.c
o Computes execution frequency of each line of code
o Marks with ##### any lines not executed
» Useful for making sure that you tested your whole program

35

Example gcov output

14282656
HHHH

A

A
il EE

753030193

751950759:
738747537 :

540:
541:
542:
543:
544 .
545:
546:
547
548:
549:
550:
551:
552:
553:
554:
555:
556:
557:
558:

Code never executed

if (cp->hsize) {
int hindex = CACHE HASH((cp, tag);

for (blk=cp->sets[set].hash[hindex];
blk;
blk=blk->hash next)
{
1f (blk->tag == tag && (blk->status & CACHE BLK VALID))
goto cache hit;
}
} else {
/* linear search the way list */
for (blk=cp->sets[set].way head;
blk;
blk=blk->way next) {
if (blk->tag == tag && (blk->status & CACHE BLK VALID))
goto cache hit;

Loop executed over 50 interations on average (751950759/14282656)

36

Summary

= Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core
— Results from Moore’s law and power constraint

= Exploiting multi-core requires parallel programming
— Automatically extracting parallelism too hard for compiler, in general.
— But, can have compiler do much of the bookkeeping for us
— OpenMP

= Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, and
then join, continuing with just one thread

— Expect a speedup of less than P on P processors
o Amdahl’s Law: speedup limited by serial portion of program
e Overhead: forking and joining are not free

37

