
Lectures 26

 Finish up disks

 Parallelism

1

2

Hard drives

 The ugly guts of a hard disk.

— Data is stored on double-sided magnetic disks called platters.

— Each platter is arranged like a record, with many concentric tracks.

— Tracks are further divided into individual sectors, which are the basic

unit of data transfer.

— Each surface has a read/write head like the arm on a record player,

but all the heads are connected and move together.

 A 75GB IBM Deskstar has roughly:

— 5 platters (10 surfaces),

— 27,000 tracks per surface,

— 512 sectors per track, and

— 512 bytes per sector. Platter

T rack

P latters

Sec tors

Tracks

3

Accessing data on a hard disk

 Accessing a sector on a track on a hard disk takes a lot of time!

— Seek time measures the delay for the disk head to reach the track.

— A rotational delay accounts for the time to get to the right sector.

— The transfer time is how long the actual data read or write takes.

— There may be additional overhead for the operating system or the

controller hardware on the hard disk drive.

 Rotational speed, measured in revolutions per minute or RPM, partially

determines the rotational delay and transfer time.

Platter

Track

Sectors

Tracks

4

Estimating disk latencies (seek time)

 Manufacturers often report average seek times of 8-10ms.

— These times average the time to seek from any track to any other

track.

 In practice, seek times are often much better.

— For example, if the head is already on or near the desired track, then

seek time is much smaller. In other words, locality is important!

— Actual average seek times are often just 2-3ms.

5

Estimating Disk Latencies (rotational latency)

 Once the head is in place, we need to wait until the right sector is

underneath the head.

— This may require as little as no time (reading consecutive sectors) or

as much as a full rotation (just missed it).

— On average, for random reads/writes, we can assume that the disk

spins halfway on average.

 Rotational delay depends partly on how fast the disk platters spin.

Average rotational delay = 0.5 x rotations x rotational speed

— For example, a 5400 RPM disk has an average rotational delay of:

0.5 rotations / (5400 rotations/minute) = 5.55ms

6

Estimating disk times

 The overall response time is the sum of the seek

time, rotational delay, transfer time, and overhead.

 Assume a disk has the following specifications.

— An average seek time of 9ms

— A 5400 RPM rotational speed

— A 10MB/s average transfer rate

— 2ms of overheads

 How long does it take to read a random 1,024 byte sector?

— The average rotational delay is 5.55ms.

— The transfer time will be about (1024 bytes / 10 MB/s) = 0.1ms.

— The response time is then 9ms + 5.55ms + 0.1ms + 2ms = 16.7ms.

That’s 16,700,000 cycles for a 1GHz processor!

 One possible measure of throughput would be the number of random

sectors that can be read in one second.

(1 sector / 16.7ms) x (1000ms / 1s) = 60 sectors/second.

7

Estimating disk times

 The overall response time is the sum of the seek

time, rotational delay, transfer time, and overhead.

 Assume a disk has the following specifications.

— An average seek time of 3ms

— A 7200 RPM rotational speed

— A 10MB/s average transfer rate

— 2ms of overheads

 How long does it take to read a random 1,024 byte sector?

— The average rotational delay is:

— The transfer time will be about:

— The response time is then:

 How long would it take to read a whole track (512 sectors) selected at

random, if the sectors could be read in any order?

8

Parallel I/O

 Many hardware systems use parallelism for increased speed.

— Pipelined processors include extra hardware so they can execute

multiple instructions simultaneously.

— Dividing memory into banks lets us access several words at once.

 A redundant array of inexpensive disks or RAID system allows access to

several hard drives at once, for increased bandwidth.

— The picture below shows a single data file with fifteen sectors

denoted A-O, which are ―striped‖ across four disks.

— This is reminiscent of interleaved main memories from last week.

9

Pipelining vs. Parallel processing

 In both cases, multiple ―things‖ processed by multiple ―functional units‖

Pipelining: each thing is broken into a sequence of pieces, where each

piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single

functional unit

 We will briefly introduce the key ideas behind parallel processing

— instruction level parallelism

— data-level parallelism

— thread-level parallelism

10

Exploiting Parallelism

 Of the computing problems for which performance is important, many

have inherent parallelism

 Best example: computer games

— Graphics, physics, sound, AI etc. can be done separately

— Furthermore, there is often parallelism within each of these:

• Each pixel on the screen’s color can be computed independently

• Non-contacting objects can be updated/simulated independently

• Artificial intelligence of non-human entities done independently

 Another example: Google queries

— Every query is independent

— Google is read-only!!

11

Parallelism at the Instruction Level

add $2 <- $3, $4

or $2 <- $2, $4

lw $6 <- 0($4)

addi $7 <- $6, 0x5

sub $8 <- $8, $4

Dependences?

RAW

WAW

WAR

When can we reorder instructions?

add $2 <- $3, $4

or $5 <- $2, $4

lw $6 <- 0($4)

sub $8 <- $8, $4

addi $7 <- $6, 0x5

When should we reorder instructions?

Surperscalar Processors:

Multiple instructions executing in

parallel at *same* stage

12

OoO Execution Hardware

13

Exploiting Parallelism at the Data Level

 Consider adding together two arrays:

void

array_add(int A[], int B[], int C[], int length) {

int i;

for (i = 0 ; i < length ; ++ i) {

C[i] = A[i] + B[i];

}

}

+

Operating on one element at a time

14

Exploiting Parallelism at the Data Level

 Consider adding together two arrays:

void

array_add(int A[], int B[], int C[], int length) {

int i;

for (i = 0 ; i < length ; ++ i) {

C[i] = A[i] + B[i];

}

}

+

Operating on one element at a time

15

 Consider adding together two arrays:

void

array_add(int A[], int B[], int C[], int length) {

int i;

for (i = 0 ; i < length ; ++ i) {

C[i] = A[i] + B[i];

}

}

+

Exploiting Parallelism at the Data Level (SIMD)

+

Operate on MULTIPLE elements

+ + Single Instruction,

Multiple Data (SIMD)

16

Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store

— 4 single precision FP values (SSE) 4 * 32b

— 2 double precision FP values (SSE2) 2 * 64b

— 16 byte values (SSE2) 16 * 8b

— 8 word values (SSE2) 8 * 16b

— 4 double word values (SSE2) 4 * 32b

— 1 128-bit integer value (SSE2) 1 * 128b

4.0 (32 bits)

+

4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

2.3 (32 bits)1.7 (32 bits)2.0 (32 bits)-1.5 (32 bits)

0.3 (32 bits)5.2 (32 bits)6.0 (32 bits)2.5 (32 bits)

17

Is it always that easy?

 Not always… a more challenging example:

unsigned

sum_array(unsigned *array, int length) {

int total = 0;

for (int i = 0 ; i < length ; ++ i) {

total += array[i];

}

return total;

}

 Is there parallelism here?

18

We first need to restructure the code

unsigned

sum_array2(unsigned *array, int length) {

unsigned total, i;

unsigned temp[4] = {0, 0, 0, 0};

for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];

temp[1] += array[i+1];

temp[2] += array[i+2];

temp[3] += array[i+3];

}

total = temp[0] + temp[1] + temp[2] + temp[3];

for (; i < length ; ++ i) {

total += array[i];

}

return total;

}

19

Then we can write SIMD code for the hot part

unsigned

sum_array2(unsigned *array, int length) {

unsigned total, i;

unsigned temp[4] = {0, 0, 0, 0};

for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];

temp[1] += array[i+1];

temp[2] += array[i+2];

temp[3] += array[i+3];

}

total = temp[0] + temp[1] + temp[2] + temp[3];

for (; i < length ; ++ i) {

total += array[i];

}

return total;

}

20

Thread level parallelism: Multi-Core Processors

 Two (or more) complete processors, fabricated on the same silicon chip

 Execute instructions from two (or more) programs/threads at same time

#1 #2

IBM Power5

21

Multi-Cores are Everywhere

Intel Core Duo in Macs, etc.: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric

multi-core with 9 cores (1 general-purpose, 8

special purpose SIMD processors)

22

Why Multi-cores Now?

 Number of transistors we can put on a chip growing exponentially…

23

… and performance growing too…

 But power is growing even faster!!

— Power has become limiting factor in current chips

24

 What happens if we run a program on a multi-core?

void

array_add(int A[], int B[], int C[], int length) {

int i;

for (i = 0 ; i < length ; ++i) {

C[i] = A[i] + B[i];

}

}

As programmers, do we care?

#1 #2

25

What if we want a program to run on both processors?

 We have to explicitly tell the machine exactly how to do this

— This is called parallel programming or concurrent programming

 There are many parallel/concurrent programming models

— We will look at a relatively simple one: fork-join parallelism

— In CSE 303, you saw a little about threads and explicit synchronization

26

1.Fork N-1 threads

2.Break work into N pieces (and do it)

3.Join (N-1) threads

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

Fork/Join Logical Example

How good is this with caches?

27

How does this help performance?

 Parallel speedup measures improvement from parallelization:

time for best serial version

time for version with p processors

 What can we realistically expect?

speedup(p) =

28

 In general, the whole computation is not (easily) parallelizable

Reason #1: Amdahl’s Law

Serial regions

29

 Suppose a program takes 1 unit of time to execute serially

 A fraction of the program, s, is inherently serial (unparallelizable)

 For example, consider a program that, when executing on one processor, spends

10% of its time in a non-parallelizable region. How much faster will this program

run on a 3-processor system?

 What is the maximum speedup from parallelization?

Reason #1: Amdahl’s Law

New Execution

Time
=

1-s
+ s

p

New Execution

Time
=

.9T
+ .1T =

3
Speedup =

30

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

— Forking and joining is not instantaneous

• Involves communicating between processors

• May involve calls into the operating system

— Depends on the implementation

Reason #2: Overhead

New Execution

Time
=

1-s
+ s + overhead(P)

P

31

Programming Explicit Thread-level Parallelism

 As noted previously, the programmer must specify how to parallelize

 But, want path of least effort

 Division of labor between the Human and the Compiler

— Humans: good at expressing parallelism, bad at bookkeeping

— Compilers: bad at finding parallelism, good at bookkeeping

 Want a way to take serial code and say ―Do this in parallel!‖ without:

— Having to manage the synchronization between processors

— Having to know a priori how many processors the system has

— Deciding exactly which processor does what

— Replicate the private state of each thread

 OpenMP: an industry standard set of compiler extensions

— Works very well for programs with structured parallelism.

32

Performance Optimization

 Until you are an expert, first write a working version of the program

 Then, and only then, begin tuning, first collecting data, and iterate

— Otherwise, you will likely optimize what doesn’t matter

―We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.‖ -- Sir Tony Hoare

33

Using tools to do instrumentation

 Two GNU tools integrated into the GCC C compiler

 Gprof: The GNU profiler

— Compile with the -pg flag

• This flag causes gcc to keep track of which pieces of source code

correspond to which chunks of object code and links in a profiling

signal handler.

— Run as normal; program requests the operating system to periodically

send it signals; the signal handler records what instruction was
executing when the signal was received in a file called gmon.out

— Display results using gprof command

• Shows how much time is being spent in each function.

• Shows the calling context (the path of function calls) to the hot

spot.

34

Example gprof output

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

81.89 4.16 4.16 37913758 0.00 0.00 cache_access

16.14 4.98 0.82 1 0.82 5.08 sim_main

1.38 5.05 0.07 6254582 0.00 0.00 update_way_list

0.59 5.08 0.03 1428644 0.00 0.00 dl1_access_fn

0.00 5.08 0.00 711226 0.00 0.00 dl2_access_fn

0.00 5.08 0.00 256830 0.00 0.00 yylex

Over 80% of time spent in one function

index % time self children called name

0.82 4.26 1/1 main [2]

[1] 100.0 0.82 4.26 1 sim_main [1]

4.18 0.07 36418454/36484188 cache_access <cycle 1> [4]

0.00 0.01 10/10 sys_syscall [9]

0.00 0.00 2935/2967 mem_translate [16]

0.00 0.00 2794/2824 mem_newpage [18]

Provides calling context (main calls sim_main calls cache_access) of hot spot

35

Using tools for instrumentation (cont.)

 Gprof didn’t give us information on where in the function we were
spending time. (cache_access is a big function; still needle in

haystack)

 Gcov: the GNU coverage tool

— Compile/link with the -fprofile-arcs -ftest-coverage options

• Adds code during compilation to add counters to every control

flow edge (much like our by hand instrumentation) to compute

how frequently each block of code gets executed.

— Run as normal

— For each xyz.c file an xyz.gdna and xyz.gcno file are generated

— Post-process with gcov xyz.c

• Computes execution frequency of each line of code

• Marks with ##### any lines not executed

Useful for making sure that you tested your whole program

36

Example gcov output

14282656: 540: if (cp->hsize) {

#####: 541: int hindex = CACHE_HASH(cp, tag);

-: 542:

#####: 543: for (blk=cp->sets[set].hash[hindex];

-: 544: blk;

-: 545: blk=blk->hash_next)

-: 546: {

#####: 547: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))

#####: 548: goto cache_hit;

-: 549: }

-: 550: } else {

-: 551: /* linear search the way list */

753030193: 552: for (blk=cp->sets[set].way_head;

-: 553: blk;

-: 554: blk=blk->way_next) {

751950759: 555: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))

738747537: 556: goto cache_hit;

-: 557: }

-: 558: }

Loop executed over 50 interations on average (751950759/14282656)

Code never executed

37

 Multi-core is having more than one processor on the same chip.

— Soon most PCs/servers and game consoles will be multi-core

— Results from Moore’s law and power constraint

 Exploiting multi-core requires parallel programming

— Automatically extracting parallelism too hard for compiler, in general.

— But, can have compiler do much of the bookkeeping for us

— OpenMP

 Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, and

then join, continuing with just one thread

— Expect a speedup of less than P on P processors

• Amdahl’s Law: speedup limited by serial portion of program

• Overhead: forking and joining are not free

Summary

