Lectures 22

■ Virtual Memory cont ③

What about a TLB miss?

- If we miss in the TLB, we need to "walk the page table"
- In MIPS, an exception is raised and software fills the TLB
- $-\,$ In x86, a "hardware page table walker" fills the TLB
- What if the page is not in memory?
 - This situation is called a page fault.
 - The operating system will have to request the page from disk.
 - It will need to select a page to replace.
 - The O/S tries to approximate LRU (see CS451)
 - The replaced page will need to be written back if dirty.

10

Memory Protection

- In order to prevent one process from reading/writing another process's memory, we must ensure that a process cannot change its virtual-tophysical translations.
- Typically, this is done by:
 - Having two processor modes: user & kernel.
 - Only the O/S runs in kernel mode
 - Only allowing kernel mode to write to the virtual memory state, e.g.,
 - The page table
 - The page table base pointer
 - The TLB

Paged virtual memory enables sharing at the granularity of a page, by allowing two page tables to point to the same physical addresses.
For example, if you run two copies of a program, the O/S will share the code pages between the programs.

Program A

Physical

Program B

Memory

Disk

Disk

1

Summary

- Virtual memory is great:
 - $\boldsymbol{-}$ It means that we don't have to manage our own memory.
 - It allows different programs to use the same memory.
 It provides protect between different processes.

 - It allows controlled sharing between processes (albeit somewhat inflexibly).
- The key technique is **indirection**:

- The key technique is indirection:

 Yet another classic CS trick you've seen in this class.
 Many problems can be solved with indirection.

 Caching made a few appearances, too:

 Virtual memory enables using physical memory as a cache for disk.
 We used caching (in the form of the Translation Lookaside Buffer) to make Virtual Memory's indirection fast.

13