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Lectures 22 Virtual Memory

= Virtual Memory cont © - = Because different processes will have different mappings from virtual to
physical addresses, two programs can freely use the same virtual
address.

= By allocating distinct regions of physical memory to A and B, they are
prevented from reading/writing each others data.
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Finding the right page Page Table picture
= If it is fully associative, how do we find the right page without scanning CE3 | Pagetable imaister Aot v;ll-v :2? P.T. e tdeg 5
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= Our index happens to be called the page table: 7 fe) g
— Each process has a separate page table L Phslcalpae umber ) (lny sy k 3
+ A “page table register”” points to the current process’s page table ;
— The page table is indexed with the virtual page number (VPN) !
« The VPN is all of the bits that aren’t part of the page offset. P““m“JL i}
— Each entry contains a valid bit, and a physical page number (PPN) ;
« The PPN is concatenated with the page offset to get the physical !
address = !
— No tag is needed because the index is the full VPN, 0 then page & natn r
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How big is the page table? Dealing with large page tables
> = From the previous slide: V. A spece = B2 ¢, L} = Multi-level page tables
— Virtual page number is 20 bits. — “Any problem in CS can be solved by adding a level of indirection”
— Physical page number is 18 bits + valid bit -> round up to 32 bits. ('%Y'[‘) »or two...
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A 3-level page table
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= Why does this work?

= How about for a 64b architecture? Gu 1,;1, 00,12 Lyks
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Waitaminute!

= We've just replaced every memory access MEMEaddr] with:
MEM[MEM[MEM[MEM[PTBR * VPN1<<2] + VPN2<<2] * VPN3<<2] + offset]

= And we haven’t talked about the bad case yet (i.e., page faults)...
“Any problem in CS can be solved by adding a level of indirection”
— except too many levels of indirection...

»  How do we deal with too many levels of indirection?
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Caching Translations

= Virtual to Physical translations are cached in a Translation Lookaside W,
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What about a TLB miss?
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= |If we miss in the TLB, we need to “walk the page table”
— In MIPS, an exception is raised and software fills the TLB
— In x86, a “hardware page table walker” fills the TLB

= What if the page is not in memory?
— This situation is called a page fault.
— The operating system will have to request the page from disk.
— It will need to select a page to replace.
« The O/S tries to approximate LRU (see C5451)
— The replaced page will need to be written back if dirty.

Memory Protection

= In order to prevent one process from reading/writing another process’s
memory, we must ensure that a process cannot change its virtual-to-
physical translations.
Typically, this is done by:
— Having two processor modes: user & kernel.
+ Only the O/S runs in kernel mode
— Only allowing kernel mode to write to the virtual memory state, e.g.,
+ The page table
« The page table base pointer
« The TLB

Sharing Memory

= Paged virtual memory enables sharing at the granularity of a page, by
allowing two page tables to point to the same physical addresses.

= For example, if you run two copies of a program, the O/S will share the
code pages between the programs.
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Summary

Virtual memory is great:
— It means that we don’t have to manage our own memory.
— It allows different programs to use the same memory.
— It provides protect between different processes.
— It allows controlled sharing between processes (albeit somewhat
inflexibly).
The key technique is indirection:
— Yet another classic CS trick you’ve seen in this class.
— Many problems can be solved with indirection.
Caching made a few appearances, too:
— Virtual memory enables using physical memory as a cache for disk.
— We used caching (in the form of the Translation Lookaside Buffer) to
make Virtual Memory’s indirection fast.




