VA —C.A .

Lectures 22 Virtual Memory

= Virtual Memory cont © - = Because different processes will have different mappings from virtual to
physical addresses, two programs can freely use the same virtual
address.

= By allocating distinct regions of physical memory to A and B, they are
prevented from reading/writing each others data.

Program A Physical
Memor: X

04 s o
5 g
3 e
: z
]

3 2 =3
> 9

Lﬂ‘vy SLaLI(g

L> D) ‘u\'* J L &
1 k;) & st s
Finding the right page Page Table picture
= If it is fully associative, how do we find the right page without scanning CE3 | Pagetable imaister Aot v;ll-v :2? P.T. e tdeg 5
all of memory? T ke —
— Use an index, just like you would for a book. V. A 313020 28 27 eerrereueeneenies 1514143 1241 108 8 eeees 3210
Index, Just Jke you Wollld Tor a boot .
T Wy (] | mews WA
= Our index happens to be called the page table: 7 fe) g
— Each process has a separate page table L Phslcalpae umber) (lny sy k 3
+ A “page table register”” points to the current process’s page table ;
— The page table is indexed with the virtual page number (VPN) !
« The VPN is all of the bits that aren’t part of the page offset. P““m“JL i}
— Each entry contains a valid bit, and a physical page number (PPN) ;
« The PPN is concatenated with the page offset to get the physical !
address = !
— No tag is needed because the index is the full VPN, 0 then page & natn r
foge \ g | rams | PA
[N = -
o .
3 1 6w Pwrsical o My %5 S fole
How big is the page table? Dealing with large page tables
> = From the previous slide: V. A spece = B2 ¢, L} = Multi-level page tables
— Virtual page number is 20 bits. — “Any problem in CS can be solved by adding a level of indirection”
— Physical page number is 18 bits + valid bit -> round up to 32 bits. ('%Y'[‘) »or two...
Page Table 2nd

Base Pointer

2o
(2 x“‘):('f_’i‘?_ VA g,

A 3-level page table

o M

¢ mlr): /X @¥B~1v - f——

’XV«% v.A. [vent [vena vens Joffset] 7

= Why does this work?

= How about for a 64b architecture? Gu 1,;1, 00,12 Lyks
afilialuiii ool
/
- (‘ °f¢5)&$ Aok mliae V. A- cze .
- 1 m\o"\(lg i

GU-2:52 Lils vpp (2% 9
X —5 6

VA 15 32 ‘7.15
9,\.«gtsLtv

-‘x Pcu'{fsx o,;
[zaik? sk <oy |
Pesr bl (R

Yery em2

¥ 2 2204
2 h‘»ﬂos >

w2

Waitaminute!

= We've just replaced every memory access MEMEaddr] with:
MEM[MEM[MEM[MEM[PTBR * VPN1<<2] + VPN2<<2] * VPN3<<2] + offset]

= And we haven’t talked about the bad case yet (i.e., page faults)...
“Any problem in CS can be solved by adding a level of indirection”
— except too many levels of indirection...

» How do we deal with too many levels of indirection?

Ceely
VA — ¢q

Caching Translations

= Virtual to Physical translations are cached in a Translation Lookaside W,

Buffer (TLB). 902 i Bl 3210
T Y |
r_rzg\\ Ll il ore

L = b T

[oy T raoes |
[omrmnerms " e |] g2
g :

v

i Tig 5

cahe

i

Cache e

What about a TLB miss?

VT e @7 G
T8 = v A

AR (/Y == PA]

= |If we miss in the TLB, we need to “walk the page table”
— In MIPS, an exception is raised and software fills the TLB
— In x86, a “hardware page table walker” fills the TLB

= What if the page is not in memory?
— This situation is called a page fault.
— The operating system will have to request the page from disk.
— It will need to select a page to replace.
« The O/S tries to approximate LRU (see C5451)
— The replaced page will need to be written back if dirty.

Memory Protection

= In order to prevent one process from reading/writing another process’s
memory, we must ensure that a process cannot change its virtual-to-
physical translations.
Typically, this is done by:
— Having two processor modes: user & kernel.
+ Only the O/S runs in kernel mode
— Only allowing kernel mode to write to the virtual memory state, e.g.,
+ The page table
« The page table base pointer
« The TLB

Sharing Memory

= Paged virtual memory enables sharing at the granularity of a page, by
allowing two page tables to point to the same physical addresses.

= For example, if you run two copies of a program, the O/S will share the
code pages between the programs.

Physical
Memory

3
3
«
o
3
>

Virtual Address
$S9IPPY |ENLIA

Disk

Summary

Virtual memory is great:
— It means that we don’t have to manage our own memory.
— It allows different programs to use the same memory.
— It provides protect between different processes.
— It allows controlled sharing between processes (albeit somewhat
inflexibly).
The key technique is indirection:
— Yet another classic CS trick you’ve seen in this class.
— Many problems can be solved with indirection.
Caching made a few appearances, too:
— Virtual memory enables using physical memory as a cache for disk.
— We used caching (in the form of the Translation Lookaside Buffer) to
make Virtual Memory’s indirection fast.

