Lecture 15

= Performance
= Midterm review !

Performance

Now we’ll discuss issues related to performance:
— Laten nse Time/Execution Time vs. Throughput
JLA L
— How do you make a reascnable performance comparison?
— The 3 components of CPU performance
— The 2 laws of performance

Why know about performance

= Purchasing Perspective:
— Given a collection of machines, which has the
« Best Performance?
+ Lowest Price?
+ Best Performance/Price?
= Design Perspective:
— Faced with design options, which has the
« Best Performance Improvement?
* Lowest Cost?
« Best Performance/Cost ?
= Both require
— Basis for comparison
— Metric for evaluation

Many possible definitions of performance

Every computer vendor will select one that makes them look good. How
do you make sense of conflicting claims?

Photoshop Performance
7l .
"

P
Fower Wz G

Buitwith Infels 0.13 micron oot

teshnology, e new 2.20 e
GHz Pentum® 4 processor

delivers signifeant s P 4 -—
performance gains.

Q: Why do end users need a new pefformance metric?

A: End users who rely only on hertz as an indicator for
performance do not have a complete picture of PC processor
performance and may pay the price of missed expectations.

Two notions of performance

Plane DC to Paris |Speed Passengers | Throughput
(pmph)

747 6_@/ 610 mph |470 286,700

Concorde |3 hours 1350 mph | 132 178,200

Which has higher performance? 6”"’!,‘(-‘5‘4-.
— Depends on the metric

« Time to do the task {(Execution Time, Latency,Response Time)

« Tasks per unit time (Throughput, Bandwidth)

— Response time and throughput are often in opposition

Some Definitions

Performance is in units of things/unit time
— E.g., Hamburgers/hour
— Bigger is better

If we are primarily concerned with response time

— Performance(x)= 1
_ execution_time(x)

Relative performance: “X is N times faster than Y

N = Performance(X) = execution_time(Y' ___Iﬂg_ ~ S
Performance(Y) execution_time(X)
T “G\U

New 45 S Lines

S(GC ‘\/} %EC ,(f ($€F(um
— Basis of Comparison

= When comparing systems, need to fix the workload

— Which workload? / O ‘.

.

Workload Pros. Cons.
Actual Target Representative Very specific e
Workload P Non-portable
—_ Difficult to run/measure <~
Full Application Portable Less representative
Benchmarks Widely used —_—
Realistic
Small “Kemel” or |Easy to run Easy to “fool”
“Synthetic” Useful early in design
Benchmarks
Microbenchmarks |ldentify peak capability Real application performance

and potential bottlenecks | may be much below peak

Benchmarking

Some common benchmarks include:
— Adobe Photoshop for image processing
— BAPCo Sysmark for office applications
— Unreal Tournament 2003 for 3D games
— SPEC2000 for CPU performance

psSbench - Photoshop 5.5
Windaws 2000

The best way to see how a system
performs for a variety of programs is to
just show the execution times of all of the
programs.

Here are execution times for several
different Photoshop 5.5 tasks, from

http: / /www.tech-report.com

IR
Execttion tne (seconds)
Lowe i atter)

Summarizing performance

Summarizing performance with a single number can be misleading—just
like summarizing four years of school with a single GPA!

If you must have a single number, you
could sum the execution times.

This example graph displays the total
execution time of the individual tests
from the previous page.

A similar option is to find the average of
all the execution times.

For example, the 800MHz Pentium Il (in
yellow) needed 227.3 seconds to run 21 " p
programs, so its average execution time St it oscn e eaconce)

is 227.3/21 = 10.82 seconds.

A weighted sum or average is also possible, and lets you emphasize some
benchmarks more than others.

The components of execution time

o 150 Y =

Execution time can be divided into two parts.
— User time is spent running the application program itself.
— System time is when the application calls operating system code.

The distinction between user and system time is not always clear,
especially under different operating systems.

= The Unix time command shows both. Vsey,
salary.125 > time distill 05-examples.ps Kornd
Distilling 05-examples.ps (449,119 bytes) n

10.8 seconds (0:11)
449,119 bytes PS => 94,999 bytes PDF (21%)
10.61u 0.98s 0:15.15

I

User time “Wall clock” time (including other processes)

System time

Three Components of CPU Performance

CPU timey,p = Instructions executed)” CPly ;] Clock cycle timey
4
—— —_—
—

Cycles Per Instruction

le—

ceg= 1
g —cpebe

Instructions Executed

= Instructions executed:

— We are not interested in the static instruction count, or how many
lines of code are in a program.

— Instead we care abouE the d;namm instruction ;;;EE “oPhow many
instructions are actually execute: en the program runs.

= There are three lines of code below, but the number of instructions
executed would be 2001.

T4 $a0, 1000
Ostrich: sub $a0, $a0, 1]
bne $a0, $0, Ostrich 009 ,ll__,g

—_—

2

CPI (Review)

The average number of clock cycles per instruction, or CPI, is a function
of the machine and program. E—
— The CPI depends on the actual instructions appearing in the program—
a floating-point intensive application might have a higher CPI than an
integer-based program.

— It also depends on the CPU implementation. For example, a Pentium
can execute the same instructions as an older 80486, but faster.
= Initially we assumed each instruction took one cycle, so we had CPI = 1.
— The CPl can be > 1 due to memory stalls and slow instructions.

— The CPl can be <1 on machines that execute more than 1 instruction
per cycle (superscalar).

Execution time, again

CPU time,; = Instructions executed, * CPl, ; * Clock cycle ¢

= The easiest way to remember this is match up the units:

Seconds Instructions . Clock cycles

Program Program Instructions

Seconds

Clock cycle

= Make things faster by making any component gmaller!!

Program Compiler ISA ‘ Organization | Technology

Instruction v v

Executed v '>(>(
B v v v f/ X
meoo | XX K] S| S

= Often easy to reduce one component by increasing another

Example: Comparing across ISAs

= Intel’s ItaniumA is designed to facilitate executing multiple

instructions per cycle. If an Itanium processor achieves an average CPl of
-3 (3 instruction: per.cycle), how much faster is it than a Pentium4.
{which uses the w with an average CPIl of 17 (assume same freq)
-2 pilial Ll
a) ltanium is three times faster ’?

b) Itanium is one third as fast
c)} Not enough informati

S W-I Ver o,

diffad TS,

Improving CPI

= Many processor design techniques we’ll see improve CP|
— Often they only improve CPI for certain types of instructions

x@ where F. = I
i i
i=1

_ Instruction Count
= Fi = Fraction of instructions of type i

n

CPI =

= First Law of Performance:

Make the common case fast
I

Example: CPl improvements

i y‘g,l ol Ak

= Base Machine:

Op Type Freq (fi) Cycles CPIli

AU R .S v v o2l

Load 5 I 9,6 v v

Store 3 0,3 v v v

Branch 2 oY v 0.2 v
3.2) 3.0 2.M¢

= How much faster would the machine be if:
we added a cache to reduce average load time to 3 cycles?
« we added a branch predictor to reduce branch time by 1 cycle?

o we could do two ALU operations in parallel?
_—

Am !
= Amdahl’s Law states that optimizations are limited in their effectiveness.
Execution
Time affected by improv: t
time after = Lo 2rectecbyimprovement Time unaffected
improvement Amount of improvement by improvement

[

For example, doubling the speed of floating-point operations sounds like
a great idea. But if only 10% of the program execution time T involves
floating-point code, then the overall performance improves by just 5%.

Execution
time after = m + 0.90T = 095T
improvement 2 S °%

What is the maximum speedup from improving floating point? //
= Second Law of Performance:

Make the fast case common 0-S rorige

Summary

= Performance is one of the most important criteria in judging systems.
= There are two main measurements of performance.

— Execution time is what we’ll focus on.

— Throughput is important for servers and operating systems.

= Our main performance equation explains how performance depends on
several factors related to both hardware and software.

CPU time, ; = Instructions executed, * CPl,, * Clock cycle time,
= It can be hard to measure these factors in real life, but this is a useful

guide for comparing systems and designs.

= Amdahl’s Law tell us how much improvement we can expect from specific
enhancements.

= The best benchmarks are real programs, which are more likely to reflect
commen instruction mixes.

ined Cﬂ__"l Midterm Review -- datapath

Let’s add a Jump Indirect instruction to the single-cycle processor developed in class. This I-format instruction
3in_immi6(rs) will cause the processor to jump to the address stored in the word at memory location
immi6 + R(rs) (the same address computed by 1w and sw).

Fosd
s

10

insiruetion
momory

-0

hazards
add@) T€ 1 €EX MEM LR
5 A % 5 o @ &
ﬂ -
add) 57 <L8Y, Ox5 wp = = -
sub $8 < 3%, s4 .8) > b
() Draw arrows on the instructions above indicating all the data dependences. i
(b) Reorder the instructions into a new schedule that wil execute without any stalls on a S-stage d
processor with forwarding. For reference. you may refer to the pipeline GiagFam belo
prpcrec Wi Iobwery
AL
by
lw
A
e de

() Reorder the instructions into 2 new schedule that will execute without any stalls on a 5-stage pipelined
processor without forwarding. For reference, you may refer to the pipeline diagram below.

&

exlt

21

Calling conventions?

