Lecture 14

»  Midterm structure
—_—

» Today’s lecture:
— Finish stalls
— Branches
— Another look at performance

= Why do we need to stall sometimes?

Stalling delays the entire pipeline

= If we delay the second instruction, we’ll have to delay the third one too.
— It prevents problems such as two instructions trying to write to the
same register in the same cycle,
— Also allows forwarding between AND and OR.

Clock cycle

v $2,20(33)

and $12, %2, %5

or $13,%12, 52

Detecting Stalls, cont.

When should stalls be detetj,ted? O\Aw
lw  $2,20(53)

and $12, $2, $5

What is the stall condition?____

if( ID/EX wonquaz7l €6 (TA/W P =S TETp ps 1
Tolex T = 716/59. ¢1)
)

then stall

Stalling

= The easiest solution is to stall the pipeline.
= We could delay the AND instruction by introducing a one-cycle delay into
the pipeline, sometimes called a bubble.

Clock cycle

v $2,20($3)

and $12, 2, $5

/fvﬁ&‘.

= Notice that we’re still using forwarding in cycle 5, to get data from the
MEM/WB pipeline register to the ALU.

Stall = Nop conversion

Clock cycle

lw $2,20(%3) MI

and -

and $12, 52, $5

or  $13, 512,52

= The effect of a load stall is to insert an empty or nop instruction into the
pipeline

bypess == Lyumd/\kj
Generalizing Forwarding/Stalling

= What if data memory access was so slow, we wanted to pipeline it over 2

cycles? -
Clock cycle pdd 38

s 12,81
edb q3,3]

I IO X My Az We
How many bypass inputs would the muxes in EXE have? 3

Which instructions in the following require stalling and/or bypassing?
‘T P81l ays

w 1Dow1) ) [repole [ ke 3| ripe
(\} add r8, ro e | 1 [€x |1 192 A
add r15, r Ie| kS FV\( M |a | hala




Branches in the original pipelined datapath

"
7
lo L_ DEX F/,( When are they resolved?
T N [ xmen
pesre & e
conirol { e MEMIEB
N _.{ ~ IFAD 1| J« e
aaad ] | [ g ¢
v
c
Regiite by o L
|
| Rea Read |yl oud
register 1 deta 1 Memite
Read Inshudion NN Lx |
wacss 510 [ T R e ({0 R:l_. s
hite
. o s S o —
memory e Rewsters L0
dets s f

- RegDst

7N\
Inste15 0] {sign
extend| =

Instri20 18]\

Instr 15 - 1] U

Branches

= Most of the work for a branch computation is done in the EX stage.
— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set
or cleared accordingly.

= Thus, the branch decision cannot be made until the end of the EX stage.

— But we need to know which instruction to fetch next, in order to keep
the pipeline running!
— This leads to what’s called a control hazard.

Clock cycle

1 2 3 4 5
™
beq $2,53, Label M Hl > IF ﬁ

Stalling is one solution

= Again, stalling is always one possible solution.

Clock cycle
1 3 4

2
beq $2, 93, Label I EII {; Iﬂrl H
Ho el

= Here we just stall until cycle 4, after we do make the branch decision.

h prediction

= Another approach is to guess whether or not the branch is taken.
— In terms of hardwares= ' =
— This way we =

If we're correct, then there is no problem and the pipeline keeps going at
full speed.

Clock cycle
3 4

1 2 6 7
beq 52,53, Label I Hll j M ¢ codect
o T Yot
- next mstruction 1 Feg HQE‘-'IE[L'%: @

L~

ix=ll
Ned e
=1 =

= mext instruction 2

Branch_misprediction_

= If our guess is wrong, then we would have already started executing two
instructions incorrectly. We'll have to discard, or flush, those instructions
and begin executing the right ones from the branch target address, Label.

Clock cycle
4 5

1 3

2
beq 52,53, Label ] 5 o Hel
e
next ;nstm;tion1 I HII

next instrliction 2 m_H> *

Label:

Performance gains and losses

= Overall, branch prediction is worth it.
— Mispredicting a branch means that two clock cycles are wasted.

— But if oumttmn this is
preferable to stalling and wasting two cycles for every branch.
= All modern CPUs use branch prediction. o
— Accurate predictions are important for optimal performance. ~4q1 /J
— Most CPUs predict branches dynamically—statistics are kept at run- 1 7 L
time to determine the likelihood of a branch being taken.
= The pipeline structure also has a big impact on branch prediction.

— A longer pipeline may require more instructions to be flushed for a
misprediction, resulting in more wasted time and lower performance.

— We must also be careful that instructions do not modify registers or
memory before they get flushed.




Implementing branches

= We can actually decide the branch a little earlier, in ID instead of EX.

— Our sample instruction set has only a
— We

next nstruction 1

Label:

Implementing flushes

We must flush one instruction (in its IF stage) if the previous instruction is
BEQ and its two source registers are equal.
We can flush an instruction from the IF stage by replacing it in the IF/ID
pipeline register with a harmless nop instruction.

— MIPS uses slL $0, 50, 0 as the nop instruction.

— This happens to have a binary encoding of all 0s: 0000 .... 0000.

Flushing introduces a bubble into the pipeline, which represents the one-
cycle delay in taking the branch.

The IF.Flush control signal shown on the next page implements this idea,
but no details are shown in the diagram.

-

Branching without forwarding and load stalls

b= I | e

o Contol
/’:L k/L' x
- ) [ The other
— Aﬂ_ €c+s n SEUFF just
(o

izl

't fitl
- won’t fitl

Read Read
regider1 datal

s

it
Instruction % reoiter  data2
‘memory.

Instr

register2

Read

IF Flush

—f Witte  Registers
deta

= If no prediction:

F D EX MEM WB
IF IF ID EX MEMWB ---losc@ycle

\_/-

= If prediction:
— If Correct
IF ID EX MEM WB
IF D EX MEM WB --nocyclelost
— If Misprediction:
IF ID EX MEM WB
IFO IF1 ID EX MEM WB ---1cycle lost

( Lol
sob

0-.—‘4

(cygl:seb

Summary of Hazards/Stalls/Branches

Three kinds of hazards conspire to make pipelining difficult.

Structural hazards result from not having enough hardware available to
execute multiple instructions simultaneously.

— These are avoided by adding more functional units (e.g., more adders

or memories) or by redesigning the pipeline stages.
Data hazards can occur when instructions need to access registers that
haven’t been updated yet.

— Hazards from R-type instructions can be avoided with forwarding.

— Loads can result in a “true” hazard, which must stall the pipeline.
Control hazards arise when the CPU cannot determine which instruction
to fetch next.

— We can minimize delays by doing branch tests earlier in the pipeline.

— We can also take a chance and predict the branch direction, to make
the most of a bad situation.

Performance

= Now we'll discuss issues related to performance:
— Latency/Response Time/Execution Time vs. Throughput
— How do you make a reascnable performance comparison?
— The 3 components of CPU performance
— The 2 laws of performance




Why know about performance

= Purchasing Perspective:
— Given a collection of machines, which has the
« Best Performance?
+ Lowest Price?
+ Best Performance/Price?
= Design Perspective:
— Faced with design options, which has the
« Best Performance Improvement?
* Lowest Cost?
« Best Performance/Cost ?
= Both require
— Basis for comparison
— Metric for evaluation

Many possible definitions of performance

= Every computer vendor will select one that makes them look good. How
do you make sense of conflicting claims?

Photoshop Performance
2%t

el

inside) Fone Gt
m— s

Buitwith Infels 0.13 micron oot

teshnology, e new 2.20

GHz Pentum® 4 processor

delivers signifieant s P 4
performanse gains

Q: Why do end users need a new performance metric?

A: End users who rely only on megahertz as an indicator for
performance do not have a complete picture of PC processor
performance and may pay the price of missed expectations.

Two notions of performance

Plane DC to Paris |Speed Passengers | Throughput
(pmph)

747 6.5hours |610 mph |470 286,700

Concorde |3 hours 1350 mph | 132 178,200

= Which has higher performance?
— Depends on the metric
« Time to do the task {(Execution Time, Latency, Response Time)
« Tasks per unit time (Throughput, Bandwidth)
— Response time and throughput are often in opposition

Some Definitions

= Performance is in units of things/unit time
— E.g., Hamburgers/hour
— Bigger is better

= If we are primarily concerned with response time
— Performance(x) = 1
execution_time(x)

= Relative performance: “X is N times faster than Y”

N = Performance(X) = execution_time(Y
Performance(Y)  execution_time(X)

Basis of Comparison

When comparing systems, need to fix the workload
— Which workload?

Workload Pros. Cons.
Actual Target Representative Very specific
Workload Non-portable
Difficult to run/measure

Full Application Portable Less representative
Benchmarks Widely used

Realistic
Small “Kemel” or |Easy to run Easy to “fool”
“Synthetic” Useful early in design
Benchmarks
Microbenchmarks  |ldentify peak capability Real application performance

and potential bottlenecks | may be much below peak

Benchmarking

= Some common benchmarks include:
— Adobe Photoshop for image processing
— BAPCo Sysmark for office applications
— Unreal Tournament 2003 for 3D games
— SPEC2000 for CPU performance

psSbench - Photoshop 5.5
Windaws 2000

= The best way to see how a system Lt
performs for a variety of programs is to L
just show the execution times of all of the  rewcomsnse:
programs. e ke
= Here are execution times for several Poreazs
different Photoshop 5.5 tasks, from JR——
http: / /www.tech-report.com s s

Cokr oo

Execttion tne (seconds)
Lowe i atter)




Summarizing performance

The components of execution time

Summarizing performance with a single number can be misleading—just
like summarizing four years of school with a single GPA!

If you must have a single number, you yeSbench Photoshop 5.5
could sum the execution times. e —
This example graph displays the total
execution time of the individual tests
from the previous page.

A similar option is to find the average of
all the execution times.

For example, the 800MHz Pentium Il (in
yellow) needed 227.3 seconds to run 21
programs, so its average execution time
is 227.3/21 = 10.82 seconds.

A weighted sum or average is also possible, and lets you emphasize some
benchmarks more than others.

10 150 Y =
DeSbetich dex exseion s ssconds)
(Lower s better)

Execution time can be divided into two parts.

— User time is spent running the application program itself.

— System time is when the application calls operating system code.
The distinction between user and system time is not always clear,
especially under different operating systems.
= The Unix time command shows both.

salary.125 > time distill 05-examples.ps
Distilling 05-examples.ps (449,119 bytes)
10.8 seconds (0:11)

449,119 bytes PS => 94,999 bytes PDF  (21%)
10.61u 0.98s 0:15.15

I

User time “Wall clock” time (including other processes)

System time

Instructions Executed

25
Three Components of CPU Performance
CPU timeyp = Instructions executed, * CPly * Clock cycle timey
s
|
Cycles Per Instruction
27

* Instructions executed:
— We are not interested in the static instruction count, or how many
lines of code are in a program.
— Instead we care about the dynamic instruction count, or how many
instructions are actually executed when the program runs.
= There are three lines of code below, but the number of instructions
executed would be 2001.

T4 $a0, 1000

Ostrich: sub $a0, $a0, 1
bne $a0, $0, Ostrich

2

CPI (Review)

Execution time, again

The average number of clock cycles per instruction, or CPI, is a function
of the machine and program.

— The CPI depends on the actual instructions appearing in the program—
a floating-point intensive application might have a higher CPI than an
integer-based program.

— It also depends on the CPU implementation. For example, a Pentium
can execute the same instructions as an older 80486, but faster.

Initially we assumed each instruction took one cycle, so we had CPI = 1.

— The CPl can be > 1 due to memory stalls and slow instructions.

— The CPl can be <1 on machines that execute more than 1 instruction
per cycle (superscalar).

CPU time,, = Instructions executed, * CPI, ; * Clock cycle time,
= The easiest way to remember this is match up the units:

Seconds Instructions . Clock cycles | Seconds

Program Program Instructions Clock cycle

= Make things faster by making any component smaller!!

Program Compiler ISA Organization | Technology

Instruction
Executed
CPI

Clock Cycle
Time

= Often easy to reduce one component by increasing another




Example: Comparing across ISAs

Improving CPI

Intel’s Itanium (1A-64) ISA is designed to facilitate executing multiple
instructions per cycle. If an Itanium processor achieves an average CPl of
.3 (3 instructions per cycle), how much faster is it than a Pentium4
(which uses the x86 ISA} with an average CPIl of 17 (assume same freq)

a) ltanium is three times faster
b) Itanium is one third as fast
c} Not enough information

Many processor design techniques we’ll see improve CPI
— Often they only improve CPI for certain types of instructions

CPl . x Fi where Fi = Ii
Instruction Count
Fi = Fraction of instructions of type i

= First Law of Performance:

Make the common case fast

Example: CPl improvements

Amdahl’s Law

Base Machine:

Op Type Freq (fi) Cycles CPli

ALU 507

Load 5
Store 10% 3
Branch 20% 2

How much faster would the machine be if:
— we added a cache to reduce average load time to 3 cycles?
— we added a branch predictor to reduce branch time by 1 cycle?
— we could do two ALU operations in parallel?

Amdahl’s Law states that optimizations are limited in their effectiveness.

tExecutf|ton Time affected by improvement Time unaffected
ime after
improvement Amount of improvement by improvement

For example, doubling the speed of floating-point operations sounds like
a great idea. But if only 10% of the program execution time T involves
floating-point code, then the overall performance improves by just 5%.

Execution
time after =
improvement

m + 090T = 095T

What is the maximum speedup from improving floating point?

= Second Law of Performance:

Make the fast case common

Summary

Performance is one of the most important criteria in judging systems.
There are two main measurements of performance.

— Execution time is what we’ll focus on.

— Throughput is important for servers and operating systems.

Our main performance equation explains how performance depends on
several factors related to both hardware and software.

CPU time, ; = Instructions executed, * CPl,, * Clock cycle time,

It can be hard to measure these factors in real life, but this is a useful
guide for comparing systems and designs.

Amdahl’s Law tell us how much improvement we can expect from specific
enhancements.

The best benchmarks are real programs, which are more likely to reflect
commen instruction mixes.




