
1

Lecture 12

 Today’s topics:

— More pipelining...

2

Pipeline diagram review

 This diagram shows the execution of an ideal code fragment.

— Each instruction needs a total of five cycles for execution.

— One instruction begins on every clock cycle for the first five cycles.

— One instruction completes on each cycle from that time on.

Clock cycle

1 2 3 4 5 6 7 8 9

lw $8, 4($29) IF ID EX MEM WB

sub $2, $4, $5 IF ID EX MEM WB

and $9, $10, $11 IF ID EX MEM WB

or $16, $17, $18 IF ID EX MEM WB

add $13, $14, $0 IF ID EX MEM WB

3

 Here is the example instruction sequence used to illustrate pipelining

lw $8, 4($29)
sub $2, $4, $5
and $9, $10, $11
or $16, $17, $18
add $13, $14, $0

 The instructions in this example are independent.

— Each instruction reads and writes completely different registers.

— Our datapath handles this sequence easily, as we saw last time.

 But most sequences of instructions are not independent!

Our examples are too simple

4

An example with dependencies

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

This is not a problem for the single-cycle and multicycle datapaths.

Each instruction is executed completely before the next one

begins.

This ensures that instructions 2 through 5 above use the new

value of $2 (the sub result), just as we expect.

How would this code sequence fare in our pipelined datapath?

5

Clock cycle

1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

 The SUB instruction does not write to register $2 until clock cycle 5. This

causes two data hazards in our current pipelined datapath.

— The AND reads register $2 in cycle 3. Since SUB hasn’t modified the

register yet, this will be the old value of $2, not the new one.

— Similarly, the OR instruction uses register $2 in cycle 4, again before

it’s actually updated by SUB.

Data hazards in the pipeline diagram

6

Clock cycle

1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

 The ADD instruction is okay, because of the register file design.

— Registers are written at the beginning of a clock cycle.

— The new value will be available by the end of that cycle.

 The SW is no problem at all, since it reads $2 after the SUB finishes.

Things that are okay

7

Clock cycle

1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

 Arrows indicate the flow of data between instructions.

— The tails of the arrows show when register $2 is written.

— The heads of the arrows show when $2 is read.

 Any arrow that points backwards in time represents a data hazard in our

basic pipelined datapath. Here, hazards exist between instructions 1 & 2

and 1 & 3.

Dependency arrows

8

A fancier pipeline diagram

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Clock cycle

1 2 3 4 5 6 7 8 9

9

A more detailed look at the pipeline

 We have to eliminate the hazards, so the AND and OR instructions in our

example will use the correct value for register $2.

 When is the data is actually produced and consumed?

 What can we do?

Clock cycle

1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

10

A more detailed look at the pipeline

 We have to eliminate the hazards, so the AND and OR instructions in our

example will use the correct value for register $2.

 Let’s look at when the data is actually produced and consumed.

— The SUB instruction produces its result in its EX stage, during cycle 3

in the diagram below.

— The AND and OR need the new value of $2 in their EX stages, during

clock cycles 4-5 here.

Clock cycle

1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

11

Bypassing the register file

 The actual result $1 - $3 is computed in clock cycle 3, before it’s needed

in cycles 4 and 5.

 If we could somehow bypass the writeback and register read stages when

needed, then we can eliminate these data hazards.

— Today we’ll focus on hazards involving arithmetic instructions.

— Next time, we’ll examine the lw instruction.

 Essentially, we need to pass the ALU output from SUB directly to the AND

and OR instructions, without going through the register file.

Clock cycle

1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

12

Where to find the ALU result

 The ALU result generated in the EX stage is normally passed through the

pipeline registers to the MEM and WB stages, before it is finally written to

the register file.

 This is an abridged diagram of our pipelined datapath.

Instruction

memory
Data

memory

1

0

PC

ALU
Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

13

Forwarding

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle

1 2 3 4 5 6 7

 Since the pipeline registers already contain the ALU result, we could just

forward that value to subsequent instructions, to prevent data hazards.

— In clock cycle 4, the AND instruction can get the value $1 - $3 from

the EX/MEM pipeline register used by sub.

— Then in cycle 5, the OR can get that same result from the MEM/WB

pipeline register being used by SUB.

14

Outline of forwarding hardware

 A forwarding unit selects the correct ALU inputs for the EX stage.

— If there is no hazard, the ALU’s operands will come from the register

file, just like before.

— If there is a hazard, the operands will come from either the EX/MEM

or MEM/WB pipeline registers instead.

 The ALU sources will be selected by two new multiplexers, with control

signals named ForwardA and ForwardB.

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

15

Simplified datapath with forwarding muxes

ForwardA
Instruction

memory

Data

memory

1

0

PC

ALU
Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

0

1

2

0

1

2

ForwardB

16

Detecting EX/MEM data hazards

 So how can the hardware determine if a hazard exists?

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

17

Detecting EX/MEM data hazards

 So how can the hardware determine if a hazard exists?

 An EX/MEM hazard occurs between the instruction currently in its EX

stage and the previous instruction if:

1. The previous instruction will write to the register file, and

2. The destination is one of the ALU source registers in the EX stage.

 There is an EX/MEM hazard between the two instructions below.

 Data in a pipeline register can be referenced using a class-like syntax.

For example, ID/EX.RegisterRt refers to the rt field stored in the ID/EX

pipeline.

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

18

EX/MEM data hazard equations

 The first ALU source comes from the pipeline register when necessary.

if (EX/MEM.RegWrite = 1

and EX/MEM.RegisterRd = ID/EX.RegisterRs)

then ForwardA = 2

 The second ALU source is similar.

if (EX/MEM.RegWrite = 1

and EX/MEM.RegisterRd = ID/EX.RegisterRt)

then ForwardB = 2

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

19

Detecting MEM/WB data hazards

 A MEM/WB hazard may occur between an instruction in the EX stage and

the instruction from two cycles ago.

 One new problem is if a register is updated twice in a row.

add $1, $2, $3
add $1, $1, $4
sub $5, $5, $1

 Register $1 is written by both of the previous instructions, but only the

most recent result (from the second ADD) should be forwarded.

DMReg RegIM

DMReg RegIM

DMReg RegIM

add $1, $2, $3

add $1, $1, $4

sub $5, $5, $1

20

MEM/WB hazard equations

 Here is an equation for detecting and handling MEM/WB hazards for the

first ALU source.

if (MEM/WB.RegWrite = 1

and MEM/WB.RegisterRd = ID/EX.RegisterRs

and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs or EX/MEM.RegWrite = 0)

then ForwardA = 1

 The second ALU operand is handled similarly.

if (MEM/WB.RegWrite = 1

and MEM/WB.RegisterRd = ID/EX.RegisterRt

and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRt or EX/MEM.RegWrite = 0)

then ForwardB = 1

21

Simplified datapath with forwarding

ForwardA

Instruction

memory

Data

memory

1

0

PC

ALU
Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0

1

2

0

1

2

Forwarding

Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

ForwardB

ID/EX.

RegisterRt

ID/EX.

RegisterRs

22

The forwarding unit

 The forwarding unit has several control signals as inputs.

ID/EX.RegisterRs EX/MEM.RegisterRd MEM/WB.RegisterRd

ID/EX.RegisterRt EX/MEM.RegWrite MEM/WB.RegWrite

(The two RegWrite signals are not shown in the diagram, but they come

from the control unit.)

 The fowarding unit outputs are selectors for the ForwardA and ForwardB

multiplexers attached to the ALU. These outputs are generated from the

inputs using the equations on the previous pages.

 Some new buses route data from pipeline registers to the new muxes.

23

Example

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 Assume again each register initially contains its number plus 100.

— After the first instruction, $2 should contain -2 (101 - 103).

— The other instructions should all use -2 as one of their operands.

 We’ll try to keep the example short.

— Assume no forwarding is needed except for register $2.

— We’ll skip the first two cycles, since they’re the same as before.

24

MEM/WB.RegisterRdID/EX.

RegisterRs

Clock cycle 3

Instruction

memory

Data

memory

1

0

PC

ALU
Registers

12 (Rd)

5 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

2 (Rs)

0

1

2

0

1

2

Forwarding

Unit

1

EX: sub $2, $1, $3ID: and $12, $2, $5IF: or $13, $6, $2

102

105

X

X

2

5

101

103

101

-2

103

0

0

3

2
2

ID/EX.

RegisterRt

EX/MEM.RegisterRd

25

-2

ID/EX.

RegisterRs

5

MEM/WB.RegisterRd

EX/MEM.RegisterRd

Clock cycle 4: forwarding $2 from EX/MEM

Instruction

memory

Data

memory

1

0

PC

ALU
Registers

13 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

6 (Rs)

0

1

2

0

1

2

Forwarding

Unit

2

EX: and $12, $2, $5ID: or $13, $6, $2IF: add $14, $2, $2

106

102

X

X

6

2

102

105

-2

104

105

0

2

12
12

MEM: sub $2, $1, $3

-2

2

ID/EX.

RegisterRt

26

-2

ID/EX.

RegisterRs

2EX/MEM.RegisterRd

Clock cycle 5: forwarding $2 from MEM/WB

Instruction

memory

Data

memory

1

0

PC

ALU
Registers

14 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

2 (Rs)

0

1

2

0

1

2

Forwarding

Unit

12

6

EX: or $13, $6, $2ID: add $14, $2, $2IF: sw $15, 100($2)

-2

-2

-2

2

2

2

106

106

-2

102

1

0

13
13

MEM: and $12, $2, $5

104

104

WB: sub

$2, $1, $3

X

-2

-2

-2

2

2

ID/EX.

RegisterRt

MEM/WB.RegisterRd

27

Lots of data hazards

 The first data hazard occurs during cycle 4.

— The forwarding unit notices that the ALU’s first source register for the

AND is also the destination of the SUB instruction.

— The correct value is forwarded from the EX/MEM register, overriding

the incorrect old value still in the register file.

 A second hazard occurs during clock cycle 5.

— The ALU’s second source (for OR) is the SUB destination again.

— This time, the value has to be forwarded from the MEM/WB pipeline

register instead.

 There are no other hazards involving the SUB instruction.

— During cycle 5, SUB writes its result back into register $2.

— The ADD instruction can read this new value from the register file in

the same cycle.

28

Complete pipelined datapath...so far

0

1

Addr

Instruction

memory

Instr

Address

Write

data

Data

memory

Read

data
1

0

PC

Extend

ALUSrc
Result

Zero

ALU

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control

M

WB

WB

Rs

0

1

2

0

1

2

Forwarding

Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

29

What about stores?

 Two “easy” cases:

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $1, 0($4)

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $4, 0($1)

1 2 3 4 5 6

1 2 3 4 5 6

30

Store Bypassing: Version 1

0

1

Addr

Instruction

memory

Instr

Address

Write

data

Data

memory

Read

data
1

0

PC

Extend

ALUSrc
Result

Zero

ALU

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0

1

2

0

1

2

Forwarding

Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

EX: sw $4, 0($1) MEM: add $1, $2, $3

31

Store Bypassing: Version 2

0

1

Addr

Instruction

memory

Instr

Address

Write

data

Data

memory

Read

data
1

0

PC

Extend

ALUSrc
Result

Zero

ALU

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0

1

2

0

1

2

Forwarding

Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

EX: sw $1, 0($4) MEM: add $1, $2, $3

32

What about stores?

 A harder case:

 In what cycle is:

— The load value available?

— The store value needed?

 What do we have to add to the datapath?

DMReg RegIM

DMReg RegIM

lw $1, 0($2)

sw $1, 0($4)

1 2 3 4 5 6

33

Load/Store Bypassing: Extend the Datapath

0

1

Addr

Instruction

memory

Instr

Address

Write

data

Data

memory

Read

data 1

0

PC

Extend

ALUSrc
Result

Zero

ALU

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0

1

2

0

1

2

Forwarding

Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Sequence :

lw $1, 0($2)

sw $1, 0($4)

ForwardC

0

1

34

Miscellaneous comments

 Each MIPS instruction writes to at most one register.

— This makes the forwarding hardware easier to design, since there is

only one destination register that ever needs to be forwarded.

 Forwarding is especially important with deep pipelines like the ones in all

current PC processors.

 Section 6.4 of the textbook has some additional material not shown here.

— Their hazard detection equations also ensure that the source register

is not $0, which can never be modified.

— There is a more complex example of forwarding, with several cases

covered. Take a look at it!

35

Summary

 In real code, most instructions are dependent upon other ones.

— This can lead to data hazards in our original pipelined datapath.

— Instructions can’t write back to the register file soon enough for the

next two instructions to read.

 Forwarding eliminates data hazards involving arithmetic instructions.

— The forwarding unit detects hazards by comparing the destination

registers of previous instructions to the source registers of the current

instruction.

— Hazards are avoided by grabbing results from the pipeline registers

before they are written back to the register file.

 Next, we’ll finish up pipelining.

— Forwarding can’t save us in some cases involving lw.

— We still haven’t talked about branches for the pipelined datapath.

