Lecture 11

= Today’s topics:
— Pipelined data path/control unit
— Example execution

Pipelined datapath and control

= Now we'll see a basic implementation of a pipelined processor.
— The datapath and control unit share similarities with the single-cycle
and implementation that we already saw.
— An example execution highlights important pipelining concepts.
= In future lectures, we’ll discuss several complications of pipelining that
we're hiding from you for now.

Pipelining concepts

= A pipelined processor allows multiple instructions to execute at once, and
each instruction uses a different functional unit in the datapath.

= This increases throughput, so programs can run faster.
— One instruction can finish executing on every clock cycle, and simpler
stages also lead to shorter cycle times.

Clock cycle
1 2 3 5 8 9
w s0,4(5p) [IF [1D | EX | MEM | WB
sub Su0, $a0, Sa [F [EX_ | MEM [WB
and Sth, 5t2, t3 F ID [EX |[MEM| WB |
or 950, 951, 552 IF_| 1D | EX | MEM | WB |
add S5, 5t6, SO IF | ID | EX | MEM | WB |

Pipelined Datapath

= The whole point of pipelining is to allow multiple instructions to execute
at the same time.
= We may need to perform several operations in the same cycle.
— Increment the PC and add registers at the same time.
— Fetch one instruction while another one reads or writes data.

Clock cycle
\ 1 2 3 4 5 8 9
w50, 4(5sp) [IF_| 1D | EX | MEM |BWB
sub @, 520, Sal F o | Ex [MEM [wB
and Sti, 5t2, 5t3 [F D EX |[MEM | WB |
or S0, 5§51, 52 IF ID [EX [MEM | WB |
add §t5, §t6, SO IFE| ID | EX | MEM | WB |

= Thus, like the single-cycle datapath, a pipelined processor will need to
duplicate hardware elements that are needed several times in the same
clock cycle.

One register file is enough

= We need only one register file to support both the ID and WB stages.

Readl Readl
regidert detat
Read Readl
register? data 2
wite
regiser
wie Reasters
)

= Reads and writes go to separate ports on the register file.
= Writes occur in the first half of the cycle, reads occur in the second half.
——___——-—/ ————————————————

Sipgle-cycle datapath, slightly rearranged

[[

Regite
|
[Rean Feead
register1 data 1 Memwite
fead Instuction ot nd
address - (31-0) registera deta2 idress
wrte
Instruction "1 register 1 e
memory wrte | Registers Lo e
—f Vit
dete ALUSIe White Read
data dela
Instr[15-0] _(Sign
el Reabet MemR ead

Instr (20 - 16]
Instr[15 -11]

_
—]

What's been changed?

= Almost nothing! This is equivalent to the original single-cycle datapath.

— There are separate memories for instructions and data.

— There are two adders for PC-based computations and one ALU.

— The control signals are the same.

= Only some cosmetic changes were made to make the diagram smaller.

— A few labels are missing, and the muxes are smaller.

— The data memory has only one Address input. The actual memory
operation can be determined from the MemRead and MemWrite
control signals.

= The datapath components have also been moved around in preparation
for adding pipeline registers.

Pipeline registers

We’'ll add intermediate registers to our pipelined datapath too.

There’s a lot of information to save, however. We’ll simplify our diagrams
by drawing just one big pipeline register between each stage.

The registers are named for the stages they connect.

IF/1D ID/EX EX/MEM MEM/WB

Why not after the WB stage?
- ——

-:L’)M -
3 \/AH

(A=

Pipelined datapath

{41

B Fio IDEX EXMEN MEMIE
o
I3 Add
c

shit
Regntite Itz

| Readt Fead ||
register1 data Memrte
Fead Instuction Read read

address [31-0] roera ams |

wrte
Instruction [register MemToRegy
memory

Registers
s Viite
deta ALUSE

:
Instr[20 - 16]

_E Instr[15-11] U

Propagating values forward

= Any data values required in later stages must be propagated through the
pipeline registars.
= The most extreme example is the destination register.

— The rd field of the instruction word, retrieved in the first stage (IF),
determines the destination register. But that register isn’t updated
until the fifth stage (WB).

— Thus, the rd field must be passed through all of the pipeline stages,
as shown in red on the next slide.

The destination register

0 j
Pesi
B IFin IDEX EXMEM MEMME
—
P Add
c
Regite
|
Read eead ||
register! datat Memwite
Fead Instuction resd
sdsress (3101 =) register2 deta2 |~
wrte
Instruction regjster HemToReg
memory wite | Registers
dete ALUSIe

MemR e

Instr [15 - 0] @ - Repdt
Y [oo |

What about control signals?

The control signals are generated in the same way as in the single-cycle
processor—after an instruction is fetched, the processor decodes it and
produces the appropriate control values.

But just like before, some of the control signals will not be needed until
some later stage and clock cycle.

These signals must be propagated through the pipeline until they reach
the appropriate stage. We can just pass them in the pipeline registers,
along with the other data.

Control signals can be categorized by the pipeline stage that uses them.

Control signals needed
ALUSrc ALUOp RegDst
MemRead MemWrite PCSrc

RegWrite MemToReg

Pipelined datapath and control

& £+! t+ 2 £
=
o
T =
bt H B
- =
= |
‘ o E I
-
, o
c Shift
fite left2
|
S =y B
o werte
[p—
address 31-0] [4 Read Reead
register 2 dataz [~
e
Instruction | register MemToReg
oy e nes
e auwse g
wsvts-a_foron
ctend| = ReoDdl, MemR ead 0
Instr[20 - 16] o
Instr[15 - 1] f —‘
13

Notes about the diagram

= The control signals are grouped together in the pipeline registers, just to
make the diagram a little clearer.

= Not all of the registers have a write enable signal.
— Because the datapath fetches one instruction per cycle, the PC must
also be updated on each clock cycle. Including a write enable for the
PC would be redundant.
— Similarly, the pipeline registers are also written on every cycle, so no
explicit write signals are needed.

[

An example execution sequence

= Here’s a sample sequence of instructions to execute.

—> | 1000: Tw $8, 4(3$29)
addresses in 1004: sub 32, $4, $5
decimal 1008: and 39, $10, $11

1012: or $16, $17, $18
1016: add $13, $14, $0

= We’ll make some assumptions, just so we can show actual data values.
— Each register contains its number plus 100. For instance, register _5_8_
contains 108, register $29 contains 129, and so forth.
— Every data memory location contains 99.
= Our pipeline diagrams will follow some conventions.
— A ndicates values that aren’t important, like the constant field of
an R-type instruction.
— Question marks_7i7 indicate values we don’t know, usually resulting
from instructions coming before and after the ones in our example.

15
\ Cycle 2
IF: b 92,94,95 § 1D: 1§, 4(529) EX 772 MEM: 772 WB: 777
H — H ——
oiex
e
1| MEMANE
e
™
S
Reagrite () oo
|
2
Read Read Je=y| [7
raert e et
Read Irsmcion X IO I B
addhess [31.0) 4 4 fread | 2
o2 ez
2| o Mem? o
JR— o rgiter 0
emory e | e Registas Hop)
7 | e -
data ALUSKC (7)
" E
o) ion by |y
m Y rewsten JEP—— o,
. NCEN) . -
X |
)]
17

14
Cycle 1 (filling)
IF: 138, 4(329) 1D; 777 EX 777 MEM; 777 i OWB 777
oiex
N ik H
| MEMANE
3
™
18 e @
& L !
o et |7
et ot et
Reod msicion m |
addhess (31-0] (= 4 1222
T2 duaz
2| o NonToReg
JH— o rgiter s
ronss Reototers
w il YRR ™
data ALUSKC (7) 1
G
ctend) — RegDst () MemRead (7) 77| 0
CEa—(
: —‘
16
(2 q+y= 13>
Cycle 3
IFiand §2, 910, 911§ 1D:5ub $2, 94, 95 EX: w$8, 4(329) MEM: 772 WB: 777
oiex f
M EXMEM H
| TH ‘ MEMANE
L o
™
run
Regite S
. 1
oo R ey L
oot dont) et
Reod rsicion s
Reod nsmcion | | |15 Jrewr e fiog] (g
register 2 data 2 [~
2| o Mem? o
JH— o rgiter s
ronss Reototers
y 7 e e 7,
data ALUSrc (1) 1
x G
ctend) RegDst) MemRead (7) 77| 0
x e -
2 % [
)

Cycle 5 (full) Y“,Y,I_

IF: skl 913, 14,30

ID: or 818, 17,918 Ex: and 99, $10, 911 MEM: sub 32,94, 55

Powe
w8, 4(529)

2
z

MEMME

Fead Instuction
addess [31-0]

V17 Rea Read |11
register1 detat Memirte (0)
5

Add
shit
Regrte (1) Itz

|

Readt Read [113]
register2 dataz [~

o $16,17,919 § 0 anags, 910,511 MEM; e, 4028 | BT
———
Wewwe
-1
A
Regrite ()
1 0f
Rea e |1
rgictert diat Wemrte()
Rema Instucion "
address [31-0] [4 Re= Read |111)
stz ez
| e MenToReq
Instnuction [reiter B
memory o Registers
7 e e 7,
data ALUSrC (0) 1
x Sien
ctend) RegDst(1) MemRead (1) 77| 0
x o) 2 -
s b
|, T
o
19
P 3 iy

Cycle 6 (emptying)

1D: dd §13, 914, 30

EX: or$18, 17,918

z

| TS

5| e e
nstuston [e W
e w Repisters
oy 35 arte e
data ALUSr (0)
x in
ctend |~ RegDst (1) MemRead (0)
x e
[0 s [
]
20
Cycle 7
o727 EX add §13, 914, 90 MEM: or $16, $17, $18 an
pais ! ss.s10.1

EXMEM
|| TH MEMANE
i LR 4
-

Fead Instuction
addess [31-0]

Instruction
memory

y 777 Readt Fead ||

a | wrte
[register

Add
shin
Regwirte (1) 1eft2

|

register1 data
Read Read [777] | 0
register2 data2 [~

Memaite (o)

hemToReg
@

111' e Registers. memory.
data ALUSrC) Z\g‘:e R;;:
ond— Readstt) e @)
x o
(e
|

V(2
—
11D ot
0y %
Cr Hpoe Resdd L
H regitort catat Mempite)
Read Instrudion 0
address 1310 (= 4 "o Red | 2
o rstera oetaz
e
Instruction resister
memory e Revisters
cete
x Sign
ctend |~
X
Yk H
21
MEM: acld $13, 14, $0 B o §16,
17,918
EXMEN
| N | MEMME
L R
At
snin
Regifite (1) left2
1
= Read |17
regitort catat Memwite(©)
Read Instudion Fea -
adthess [31.0) [4 Reed fread 1772
rister2 a2
18| wrie MemToRes
Instruction [resister w
memo 113 Registers
4 3] vrte el
data ALUSKC (7)
Sign
ctend| = RegDst(7) MemRead (0)
i B
o) 22
" ™ |
'

22
Cycle 9
e e, 27 oo
1551450
o :
exiven
11| N | MEMME
LB 7
-
p—
I
Iyl
Rt —
Read_Insvucion m | o e
addhess [31.0) 4 4 fread 1772
Rorz s
13| wie e
nstuston o e ©
e e Repisters
4 14 vrte gl
data ALUSKC (7)
in
ctend| = RegDst(7) MemRead (7)
oS
CEa—(
]

That’s a lot of diagrams there

Performance Revisited

— Clock cycle
1 2 4 5 6 7 8 9
lw St0,4(5p) [IF_[ID | El MEM | WB
sub v, Sa0, Sat o EX_ | MEM | WB
and Sti, 5t2, 5t3 l D EX |[MEM | WB |
or §s0, 551, §s2 IF [ID | EX | MEM | WB |
add St5, 5t6, 50 IF [ID | EX | MEM | WB |

= Compare the last nine slides with the pipeline diagram above.

— You can see how instruction executions are overlapped.

— Each functional unit is used by a different instruction in each cycle.

— The pipeline registers save control and data values generated in
previous clock cycles for later use.

— When the pipeline 1 full A elock cycle 5, all of the hardware units
are utilized. This is the ideal situation, and what makes pipelined
processors so fast.

= Try to understand this example or the similar one in the book at the end
of Section 6.3.

Assuming the following functional unit latencies:

What is the cycle tim of a single-cycle implementation? {2

— What is its throughput? y e
R
Ve A

12us
What is the cycle time of a ideal pipelined implementation? >u

Ideal speedup

Clock cycle
5 6

1 2 3 8 9
w o S0,4(5p) [IF [ID | EX | MEM | WB
sub S0, Sa0, Sa1 [P i | EX [MEM [wB
and Sti, 5t2, $t3 F ID [EX [MEM | WB |
or 350, 851, 352 IF ID | EX [MEM | WB |
add Ssp, Ssp, 4 IF_ | ID | EX | MEM | WB |

= In our pipeline, we can execute up to five instructions simultaneously.
— This implies that the maximum speedup is 5 times.
— In general, the ideal speedup equals the pipeline depth.
= Why was our speedup on the previous slide “only” 4 times?
— The pipeline stages are imbalanced: a register file and ALU operations
can be done in 2ns, but we must stretch that out to 3ns to keep the
ID, EX, and WB stages synchronized with IF and MEM.
— Balancing the stages is one of the many hard parts in designing a
pipelined processor.

— What is its steady-state throughput? // s
lnl.,‘.T B s
= How much faster is pipelining? ({
—
26
The pipelining paradox
Clock cycle
1 2 3 5 8 9
w 5t0,4(5sp) [IF [ID [EX [MEM | WB
sub S0, Sa0, Sa1 [F [| EX [MEM | WB
and Sti, t2, $t3 [F ID EX |MEM| WB |
or 5§50, 51, §s2 IF ID | EX [MEM | WB |
add Ssp, $sp, 4 IF_ [10 [EX [MEM [WB]

Pipelining does not improve the execution time of any single instruction.
Each instruction here actually takes longer to execute than in a single-
cycle datapath (15ns vs. 12ns)!

Instead, pipelining increases the throughput, or the amount of work done
per unit time. Here, several instructions are executed together in each
clock cycle.

The result is improved execution time for a sequence of instructions, such
as an entire program.

Instruction set architectures and pipelining

Summary

= The MIPS instruction set was designed especially for easy pipelining.

— All instructions are 32-bits long, so the instruction fetch stage just
needs to read one word on every clock cycle.

— Fields are in the same position in different instruction formats—the
opcode is always the first six bits, rs is the next five bits, etc. This
makes things easy for the ID stage.

— MIPS is a register-to-register architecture, so arithmetic operations
cannot contain memory references. This keeps the pipeline shorter
and simpler.

= Pipelining is harder for older, more complex instruction sets.

— If different instructions had different lengths or formats, the fetch
and decode stages would need extra time to determine the actual
length of each instruction and the position of the fields.

— With memory-to-memory instructions, additional pipeline stages may
be needed to compute effective addresses and read memory before
the EX stage.

The pipelined datapath combines ideas from the single and multicycle
processors that we saw earlier.

— It uses multiple memories and ALUs.

— Instruction execution is split into several stages.
Pipeline registers propagate data and control values to later stages.
The MIPS instruction set architecture supports pipelining with uniform
instruction formats and simple addressing modes.

Next Llecture, we'll start talking about Hazards.

