Lecture 10 -

= Today’s objectives:
— No more laundry ©

~y = What does pipelining help with?

Instruction execution review

= Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction Decode [ID Read source registers and generate control signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB Store a result in the destination register.

= However, as we saw, not all instructions need all five steps.

Example: Instruction Fetch (IF)

= Let’s quickly review how lw is executed in the single-cycle datapath.
= We’ll ignore PC incrementing and branching for now.
= In the Instruction Fetch (IF) step, we read the instruction memory.

Regirite
Read Instruction | _1(25- 21] — ! " Memiiite MemTofeg
e registert datat Read Read 1
o [R o
regider2 Rea u
o ¢ it deta2 e u
" ite addess
u register e Dt 0
Registers
1115- 11 % wite dats
1 data
MenResd
Regbst s
11s-0)
3

Execute (EX)

= The third step, Execute (EX), computes the effective memory address
from the source register and the instruction’s constant field.

Regiite
Remd natmation | 1125211 m— — . Memwite MenToRea
e . i registert datat Read Read 1
Instruction el Read adess dta | |
i [P AN = S I
u regiser u 1 e o
|15 1)) % wite Revises i suop deta
1 data \T /
11501 _I
5

Instruction Steps required
beq IF ID EX
R-type IF D EX WB
sw IF ID EX MEM
S | w IF ID EX MEM WB
2
Instruction Decode (ID)
= The Instruction Decode (ID) step reads the source registers from the
register file,
Regirite
Rt e | 12521 e MemPite MenTofe
s a9 o
120- 18] = = f
Instruction et addess deln "
ety 5 ez Rexd ite u
™M Wiite o address x
u register irke DD °
1(15-1] * Write: Registers data
1 data
MenResd
RegDst ~\ ALuse
1115- 01
4
Memory (MEM)
—
= The Memory (MEM) step involves reading the data memory, from the
address computed by the ALU.
Regirite.
Read inatmuction | _1(25- 21] N Hembite MenToRey
i R et
1[20- 18] ea e 1
nstruction | $ ead address dela w
ety 5 ez Rexd e u
™M Wiite o address x
u register Ve Dt °
| (15 1] * Write: Registers data MOV
G data
MenResd
Respt s
1015201 |

Writeback (WB)

= Finally, in the Writeback (WB) step, the memory value is stored into the
destination register.

Regiite
Resd Insuction | _1(25-21] - ! " Memiiite MemTofeg
e gt cata Read Read (1)
Instruction Reat et address et "
memory ez Rexd e u
Wiite address *
restser wite Dat)
Registers
Write: o data
detn
MemRead
- aLse
-0 @
7

A bunch @Jnctional units

Notice that each execution step uses a different functional unit.

In other words, the main units are idle for most of the 8ns cyclel
— The instruction RAM is used for just 2ns at the start of the cycle.
— Registers are read once in ID (1ns), and written once in WB (1ns).
— The ALU is used for 2ns near the middle of the cycle.
— Reading the data memory only takes 2ns as well.

= That’s a lot of hardware sitting around doing nothing.

[

J(!
V=S +D P'{'\f3 ;i

SO SEea5 DI

Loy, 30% ¢ Ho7

Putting those slackers to work

= We shouldn’t have to wait for the entire instruction to complete before
we can re-use the functional units,

= For example, the instruction memory is free in the Instruction Decode
step as shown below, so...

Idle Instruction Decode (ID)
—
Regnte
Read Indtructon | 1(25- 21] - | P Meminite MemToReg
address (31 e e e
netruction Read dvess | lm
oy Teader2 Read e v
Write deta address ;
gl o b
Write. u ? data
e
e Wenfesd
11s-0p
9

< 61 cot, = o th l 5 D
v hd 8
Decoding and fetching together
= Why don’t we go ahead and fetch the next instruction while we’re
decoding the first one?
Fetch 2nd Decode 1st instruction
—
Regrite
| Memvite MenToRe
S e J ’
|01 o clata Read Read |1
Read codress osta "
Instruction
v rogider 2 Read e u
wite ez sdtress .
T Reugters e
deta T
MemRead
ReaDst
ip1s-0)
\ //'
10

Executing, decoding and fetching

Similarly, once the first instruction enters its Execute stage, we can go
ahead and decode the second instruction.
But now the instruction memory is free again, so we can fetch the third

instruction!
Fetch 3rd Decode 2nd Execute st
Regwite
Read Instruction | 1[5 -21] ﬁ MEMJWME HemT oRey
1(20-16) oo =il
Instruction | 4 Read — adress cata
reaiter2 Read 0 o
Wite deta2 " actiress
regiter ue g e _bata
e Revisters " aLuop deta MeATROTY
acte) :
lose | T
FMS” MemRead
(sin
e
_/

Making Pipelining Work

We’ll make our pipeline 5 stages long, to handle load instructions as they
were handled before.

— Stages are: IF, ID, EX, MEM, and WB
We want to support executing 5 instructions simultaneously: one in each
stage.

— Hmm, we’ll need something

Break datapath into 5 stages

Pipelining Loads

Clock cycle

[Z) 3 4 5 6 7 8 9

w510, 4(3sp) ‘ E E EX MEM | WB
lw St1, 8{(Ssp) lE D EX | MEM | WB
lw 5tZ, 12(5sp) IF ID EX | MEM | WB
lw 5t3, 1615sp) IF ID EX | MEM | WB
lw St4, 20(5sp) IF ID EX MEM | WB
6PM 7 3 9

= Each stage has its own functional units. o IU 479 hs
= Each stage can execute in 2ns [_—
IF ID EXE MEM WB
— e — Y —
Regwite
r 1 Memwite MemToRe
B et (A " \ 1
120181 & deta 1 ALY Read Read |41
Instruction 1 h o sddress - dlata m
Result Wiite u
address x
wie 03 \J
" aLuop data OO,
MemRead
Ins 2ns
13
A pipeline diagram
5
. = Clock cycle
{an 12 3 4 5 & 7 8 9
bw 510, 4(Ssp) ‘ IF ID [EX | MEM | WB
sub v, 580, Sat IF | ID | EX [MEM | wB
and S, 512, 5t3 IF ID | EX |MEM | WB
or S50, $51, §s2 IF | 1D [BX | MEM | WB ‘
add Ssp, Ssp, 4 IF [D [EX [MEM [WB ‘

= Apipeline diagram shows the execution of a series of instructions.
—
— The instruction sequence is shown vertically, from top to bottom.
— Clock cycles are shown horizontally, from left to right.

— Each instruction is divided into its component stages. (We show five
stages for every instruction, which will make the control unit easier.)

= This clearly indicates the overlapping of instructions. For example, there
are three instructions active in the third cycle above.

— The “lw” instruction is in its Execute stage.
— Simultaneously, the “sub” is in its Instruction Decode stage.
— Also, the “and” instruction is just being fetched.

Pipeline terminology

Clock cycle
1 2 3 4 5 6 7 8 9
lw 510, 4(35p) ‘ IF ID [EX | MEM | WB
sub §v0, §a0, Sat IF D EX | MEM | WB
and St1, 5t2, 5t3 IF ID EX [MEM | WB
or 550, 551, §s2 IF D EX | MEM | WB
add Ssp, $sp, -4 IF ID EX | MEM | WB
"=
filling full emptying

The pipeline depth is the number of stages—in this case, five.
In the first four cycles here, the pipeline is filling, since there are unused
functional units.

In cycle 5, the pipeline is full. Five instructions are being executed
simultaneously, so all hardware units are in use.

In cycles 6-9, the pipeline is emptying.

iIn the limit, how many instructions are finishing in each cycle?

Pipelining Performance

Clock cycle
1 2 3 4 5 6 7 8 9
lw S0, 4($5p) ‘ IF ‘ D EX | MEM | WB
tw Sth, B(Ssp) ‘ IF | ID | EX |MEM | WB
w52, 12(35p) IF ID | EX |MEM | WB
lw St3, 16(Ssp) IF [ID [BEX | MEM WB‘
w 5t4,2008p) ~—rno-- 4 IF | ID | EX MEM‘ WB ‘

filling

= Execution time on ideal pipeline: o/
— time to fill the pipeline + one cycle per instruction
— Niinstructions -> 4 cycles + N cycles or (2N + 8) ns for 2ns clock period
—_—
= Compare with other implementations:
— Single Cycle: N cycles or 8N ns for 8ns clock period Fooo ws

= How much faster is pipelining for N=1000? 7 00q s - A7

Pipeline Datapath: Resource Requirements

", Clock cycle

1 2 3. 4 5 7 8 9
lw S0, 4(Ssp) ‘ IF D @ MEMY WB

lw Sth, B(Ssp) IF ID | EX |MEM Q/

w52, 12(55p) @ D | EX |MEM | WB

lw $t3, 16(5sp) @_) ID [EX [MEM | WB

lw Std, 20(5sp) IF QD) EX | MEM | WB

* We need to perform several operations in the same cycle.
— Increment the PC and add registers at the same time.
— Fetch one instruction while another one reads or writes data.

= Thus, like the single-cycle datapath, a pipelined processor duplicates
hardware elements that are needed several times in the same clock
cycle.

Pipelining other instruction types

= R-type instructions only require 4 stages: IF, ID, EX, and WB
— We don’t need the MEM stage
= What happens if we try to pipeline loads with R-type instructions?

Clock cycle
4 5 6

Important Observation

= Each functional unit can only be used once per instruction
= Each functional unit must be used at the same stage for all instructions.
See the problem if:
— Load uses Register File’s Write Port during its 5th stage
— R-type uses Register File’s Write Port during its 4th stage

Clock cycle
4 5 6

1 2 3 78 9
add Ssp, Ssp, -4 IF ID EX WB
sub $v0, $a0, Sa1 IF D EX | WB C""‘.[LLJ'
FN —
lw $t0, 4(%sp) IF ID EX | MEM [WB
o 50,557, 552 F [0 | EX W/
Iw $th, B(Ssp) IF [1D [EX | MEM l WB ‘
19
A solution: Insert NOP stages
= Enforce uniformity
— Make all instructions take 5 cycles.
— Make them have the same stages, in the same order
« Some stages will do nothing for some instructions
R-type ‘ IF ‘ ID ‘ EX ‘ NOP I WB ‘
Clock cycle
1 2 34 5 e 8 9
add Ssp, $sp, 4 ‘ IF ‘ ID EX NOP | WB
sub S0, $a0, Sal ‘ IF ID EX | NOP | WB
lw S0, 4(3sp) IF ID EX | MEM | WB
or S50, 951, $52 IF ID EX NOP | WB ‘
Iw $t1, B(Ssp) IF 1o [EX [MEM [WB |

+ Stores and Branches have NOP stages, too...

store | IF ‘ ID ‘ EX ‘N\EM|I~IOP|
branch | IF ‘ ID ‘ EX ‘I\IOP |I\IOP|

21

1 2 3 8 9

add Ssp, Ssp, 4 IF ID | EX | WB

sub S0, §a0, Sat IF | ID | EX | WB

bw 510, 4(Ssp) IF | D [EX |[MEM| WB

or S50, $s1, Ss2 IF ID EX WwB

lw St1, B(Ssp) IF [D | EX MEMIWB ‘
20

Summary

Pipelining attempts to maximize instruction throughput by overlapping
the execution of multiple instructions.
Pipelining offers amazing speedup.

— In the best case, one instruction finishes on every cycle, and the

speedup is equal to the pipeline depth.

The pipeline datapath is much like the single-cycle one, but with added
pipeline registers

— Each stage needs is own functional units

Next time we’ll see the datapath and control, and walk through an
example execution.

