Lecture 9

mold z]p;l(ollch«'_\yﬂfv*]

w i

wdlo

Single-Cycle Performance

Last time we saw a MIPS single-cycle datapath and control unit.
Today, we’ll explore factors that contribute to a processor’s execution
time, and specifically at the performance of the single-cycle machine.
Next time, we’ll explore how to improve on the single cycle machine’s
performance using pipelining.

Three Components of CPU Performance

CPU time, , = Instructions executed, * CPl, , * Clock cycle time,
t

Cycles Per Instruction

Instructions Executed

» Instructions executed:
— We are not interested in the static instruction count, or how many
lines of code are in a program.
— Instead we care about the dynamic instruction count, or how many
instructions are actually executed when the program runs.
= There are three lines of code below, but the number of instructions
executed would be....

T4 $a0, 1000

Ostrich: sub $a0, $a0, 1
bne $a0, $0, Ostrich

S

CPI

= The average number of clock cycles per instruction, or CPl, is a function
of the machine and program.
— The CPI depends on the actual instructions appearing in the program—
a floating-point intensive application might have a higher CPI than an
integer-based program.
— It also depends on the CPU implementation. For example, a Pentium
can execute the same instructions as an older 80486, but faster.
= So far we assumed each instruction took one cycle, so we had CPI = 1.
— The CPl can be > 1 due to memory stalls and slow instructions.
— The CPlcan be <1 on machines that execute more than 1 instruction
per cycle (superscalar).

Clock cycle time

One “cycle” is the minimum time it takes the CPU to do any work.
— The clock cycle time or clock period is just the length of a cycle.
— The clock rate, or frequency, is the reciprocal of the cycle time.

Generally, a higher frequency is better.

= Some examples illustrate some typical frequencies.

— A 500MHz processor has a cycle time of 7

— A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps).




Execution time, again

CPU time,; = Instructions executed, » " Clock cycle time,
= The easiest way to remember this is match up the units:

Seconds Instructions  Clock cycles | Se¥onds

Program Program Instructions Clock cycle

Make things faster by making any compenent smaller!!

Program Compiler I1SA Organization | Technology
Instruction
Executed \/
CPI v
Clock Cycle
Time l/

= Often easy to reduce one component by increasing another

Example 1: ISA-compatible processors

Let’s compare the performances two x86-based processors.
— An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor.
— A 1GHz Pentium Il with a CPIl of 1.5 for the same program.

Compatible processors implement identical instruction sets and will use
the same executable files, with the same number of instructions.

But they implement the ISA differently, which leads to different CPIs.

CPU time,p ; = Instructions, " CPl,, » * Cycle time,,

. = Ix 215
s foox 10® Lo ¢
CPU time;;, = Instructions, * CPlpgp * Cycle timeg;
= T A0S A . Fx07
= - a _—
1o lo¢

Example 2: Comparing across ISAs

= Intel’s Itanium (IA-64) ISA is designed facilitate executing multiple
instructions per cycle. If an Itanium processor achieves an average CPl of
.3 (3 instructions per cycle), how much faster is it than a Pentium4
(which uses the x86 ISA} with an average CPI of 17

a) ltanium is three times faster

b) Itanium is one third as fast
c} Not enough information

April 19, 2010 Performance 9

The single-cycle design from last time

A control unit {not
shown) generates all
the control signals
from the instruction’s
“op” and “func” fields.

Read Instnuction 1[25-21] L e e
S R ‘
register detat Read Read by (1
1[20-16] address  data
f— "
‘ot register 2 Read Wirite u
. 0 data 2 x
A | viiecs :
u register wite | Dot
1511y X | | e ReOISters dela MY
> uy data

aLuop
T
. Men Read

RegDst
11s-0) si
exten

The example add from last time

= Consider the instruction add $s4, t1, $t2.

[[000000 [ 01001 [ oto10 [ 10100 | 00000 [ 100000
op rs rt rd shamt func

= Assume $t1 and $t2 initially contain 1 and 2 respectively.
= Executing this instruction involves several steps.

. The instruction word is read from the instruction memory, and the
program counter is incremented by 4.

. The sources $t1 and $t2 are read from the register file.
. The values 1 and 2 are added by the ALU.
. The result (3) is stored back into $s4 in the register file.

LW

April 19, 2010 Multicycle datapath "

How the add goes through the datapath

PCH

o
w
0 @ i

pesre
Regiite
1 Memwite MemToReg
Resd_Inaiuchon | 11252001001 ey ] o |
adiress [31-0] e R
1120 - 18101010 Reaw Reat| 1
Instruction +| Rea . "
memory. 7 regster2  Reant | 9011 e I
" it deta2 autiress x
u [ regster e Dta 0
tpsan X | | e Revisters L
10100 data T

Men Resd

RegDst
ins-0 si 0.1
extend =




Performance of Single-cycle Design

CPU time, , = Instructions executed, * CPl, , * Clock cycle time,

—> The datapath and the clock

—1. On apositive clock edge, the PC is updated with a new address.

. Anew ins ion can then be loaded from memory. The control unit sets
the datapath signals appropriately so that

< registers areread,
+ ALUoutput is generated,
Y data memory is read or written, and

~

¥ branch target addresses are computed.

. Several things happen on the next positive clock edge.
— The register file is updated for arithmetic or lw instructions.
— Data memory is written for a sw instruction.
— The PC is updated to point to the next instruction.

w

= In asingle-cycle datapath everything in Step 2 must complete within one
clock cycle, before the next positive clock edge.

How long is that clock cycle?

The slowest instruction...

= [f all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.
= For example, lw $t0, -4(Ssp) is the slowest instruction needing __ns.
— Assuming the circuit latencies below.

Hs

Road Ineincten | g1125-21) J[Resa Read
regster!  detat Resd  Feat f
| [20- 16]
) o adohess  dats
Instruction Tewder2  Read
memo e H
. 0 data 2 posh x
ol e adress
register °

u
2n 115 11| X Rogoters
] virte

:

0ns 1ns r
et [ OTI
0ns

Edge-triggered state elements s
==
- —=
= In aninstruction like add $t1, $t1, $t2, how do we know R“T”"‘E %
$t1 is not updated until after its original value is read? ¥* N
= We'll assume that our state elements are positive edge
triggered, and are updated only on the positive edge of a
clock signal.
— The register file and data memory have explicit write
control signals, RegWrite and MemWrite. These units
can be written to only if the control signal is asserted [—
and there is a positive clock edge. |
— In asingle-cycle machine the PC is updated on each Moo e ol
clock cycle, so we don’t bother to give it an explicit Wie
. . address
write control signal. Dt
Aot ™ o
A y T
v 3
Vhan
Evrie
Compute the longest path in the add instruction
pCid
2vs3
Read Instuction 1[25-21] pem e MemToReg
Instruction +| Read address data M
netruct regiderz  Read .
" wfwae 2 aaess x
- u *| register gt Wite “mt 0
2ns e vite osters deta 1| ons
v MenRead
R | SO
115-0) O ns| @ 2ns
bug
—
The slowest instruction...
= [f all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.
= For example, lw $t0, -4(%sp) needs 8ns, assuming the delays shown here.
ple, P ) 2 ys
vreading the instruction memory 2ns
“reading the base register $sp 1ns 125 iy
Lcomputing memory address $sp-4  Zns @ b4
reading the data memory 2ns
 storing data back to $t0 1ns
Read Instuction 1[25-21]
" | [20-15] address data
" 2 regiderz  Read e u
'] Wirite: deta2 address x
1 gt 2 oy | [
2ns ERUY bl I data - Ons
ns

0 ns 1ns
115-0 sign
lextend|——
0ns




...determines the clock cycle time

How bad is this?

= If we make the cycle time 8ns then every instruction will take 8ns, even
if they don’t need that much time.
= For example, the instruction add $s4, $t1, $t2 really needs just 6ns.

reading the instruction memory 2ns
reading registers $t1 and 5t2 1ns
computing $t1 + $t2 2ns
storing the result into $s0 1ns

F;'::vdess\nsin;ﬂ:n] 1[25-21] o[ Read Read
s regter!  detat P "
I i 1202161 Read address data
nstruction register 2 Read
memo . u
e ¢ data 2 it x
n|_|wie adress
e e Data o
Zns 1115111 % egisters dat: memery
| virte o bs
! data
) 2ns
s
1[15- 0]

With these same component delays, a sw instruction would need 7ns, and
beq would need just 5ns.
Let’s consider the gee instruction mix from p. 189 of the textbook.

Instruction
Arithmetic
Loads
Stores
Branches

With a single-cycle datapath, each instruction would require 8ns.
But if we could execute instructions as fast as possible, the average time
per instruction for gcc would be:

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns

The single-cycle datapath is about 1.26 times slower!

It gets worse...

Summary

= We’ve made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns.
+ For comparison, an ALU on an AMD Opteron takes -0.3ns.
= Our worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.
= Tying frequency to worst case path violates first law of performancel!!

— “Make the common case fast” (we'll revisit this often)
—_—

>

Performance is one of the most important criteria in judging systems.
— Here we’ll focus on Execution time.

Our main performance equation explains how performance depends on
several factors related to both hardware and software.

CPU time, ; = Instructions executed, * CPl,; * Clock cycle time,

It can be hard to measure these factors in real life, but this is a useful
guide for comparing systems and designs.

A single-cycle CPU has two main disadvantages.
— The cycle time is limited by the worst case latency.
— It isn’t efficiently using its hardware.

Next time, we’ll see how this can be rectified with pipelining.




