
1

Lecture 8

 Assembly language wrap-up

 Single-cycle implementation

2

Assembly Language Wrap-Up

We’ve introduced MIPS assembly language

Remember these ten facts about it

1. MIPS is representative of all assembly languages – you
should be able to learn any other easily

2. Assembly language is machine language expressed in
symbolic form, using decimal and naming

3. R-type instruction op $r1,$r2,$r3 is $r1 = $r2 op $r3

4. I-type instruction op $r1,$r2,imm is $r1 = $r2 op imm

5. I-type is used for arithmetic, branches, load & store, so the
roles of the fields change

6. Moving data to/from memory uses imm($rs) for the
effective address, ea = imm + $rs, to reference M[ea]

Ten Facts Continued

7. Branch and Jump destinations in instructions refer to

words (instructions) not bytes

8. Branch offsets are relative to PC+4

9. By convention registers are used in a disciplined way;

following it is wise!

10. ―Short form‖ explanation is on the green card, ―Long

form‖ is in appendix B

3

4

Instruction Format Review

Register-to-register arithmetic instructions are R-type

Load, store, branch, & immediate instructions are I-type

The jump instruction uses the J-type instruction format

op rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt address

6 bits 5 bits 5 bits 16 bits

op address

6 bits 26 bits

Review

 If three instructions have opcodes 1, 7 and 15 are they all of the same

type?

 If we were to add an instruction to MIPS of the form MOD $t1, $t2, $t3,

which performs $t1 = $t2 MOD $t3, what would be its opcode?

 How can you tell if the immediate field is positive or negative?

 Could the distance J jumps be increased by using an opcode of fewer

bits?

5

6

A single-cycle MIPS processor

 An instruction set architecture is an interface that defines the hardware

operations which are available to software.

 Any instruction set can be implemented in many different ways. Over the

next few weeks we’ll see several possibilities.

— In a basic single-cycle implementation all operations take the same

amount of time—a single cycle.

— A multicycle implementation allows faster operations to take less

time than slower ones, so overall performance can be increased.

— Finally, pipelining lets a processor overlap the execution of several

instructions, potentially leading to big performance gains.

7

Single-cycle implementation

 We will describe the implementation a simple MIPS-based instruction set

supporting just the following operations.

 Today we’ll build a single-cycle implementation of this instruction set.

— All instructions will execute in the same amount of time; this will

determine the clock cycle time for our performance equations.

— We’ll explain the datapath first, and then make the control unit.

Arithmetic: add sub and or slt

Data Transfer: lw sw

Control: beq

8

Computers are state machines

 A computer is just a big fancy state machine.

— Registers, memory, hard disks and other storage form the state.

— The processor keeps reading and updating the state, according to the

instructions in some program.

State

CPU

9

John von Neumann

 In the old days, ―programming‖ involved actually changing a machine’s

physical configuration by flipping switches or connecting wires.

— A computer could run just one program at a time.

— Memory only stored data that was being operated on.

 Then around 1944, John von Neumann and others got the idea to encode

instructions in a format that could be stored in memory just like data.

— The processor interprets and executes instructions from memory.

— One machine could perform many different tasks, just by loading

different programs into memory.

— The ―stored program‖ design is often called a Von Neumann machine.

10

Memories

 It’s easier to use a Harvard architecture at first, with

programs and data stored in separate memories.

 To fetch instructions and read & write words, we

need these memories to be 32-bits wide (buses are

represented by dark lines here). We still want byte

addressability, so these are 230 x 32 memories.

 Blue lines represent control signals. MemRead and

MemWrite should be set to 1 if the data memory is to

be read or written respectively, and 0 otherwise.

— When a control signal does something when it is

set to 1, we call it active high (vs. active low)

because 1 is usually a higher voltage than 0.

 For now, we will assume you cannot write to the

instruction memory.

— Pretend it’s already loaded with a program,

which doesn’t change while it’s running.

Read

address

Instruction

memory

Instruction

[31-0]

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

11

Instruction fetching

 The CPU is always in an infinite loop, fetching

instructions from memory and executing them.

 The program counter or PC register holds the

address of the current instruction.

 MIPS instructions are each four bytes long, so

the PC should be incremented by four to read

the next instruction in sequence.

Read

address

Instruction

memory

Instruction

[31-0]

P

C

Add

4

12

Encoding R-type instructions

 Last lecture, we saw encodings of MIPS instructions as 32-bit values.

 Register-to-register arithmetic instructions use the R-type format.

— op is the instruction opcode, and func specifies a particular arithmetic

operation (see textbook).

— rs, rt and rd are source and destination registers.

 An example instruction and its encoding:

add $s4, $t1, $t2

op rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 01001 01010 10100 00000 1000000

13

Registers and ALUs

 R-type instructions must access registers and an ALU.

 Our register file stores thirty-two 32-bit values.

— Each register specifier is 5 bits long.

— You can read from two registers at a time.

— RegWrite is 1 if a register should be written.

 Here’s a simple ALU with five operations, selected by

a 3-bit control signal ALUOp.
ALU

ALUOp

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

ALUOp Function

000 and

001 or

010 add

110 subtract

111 slt

14

Executing an R-type instruction

1. Read an instruction from the instruction memory.

2. The source registers, specified by instruction fields rs and rt, should be

read from the register file.

3. The ALU performs the desired operation.

4. Its result is stored in the destination register, which is specified by field

rd of the instruction word.

Read

address

Instruction

memory

Instruction

[31-0]

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

I [25 - 21]

I [20 - 16]

I [15 - 11]

Result

Zero

ALU

ALUOp

op rs rt rd shamt func

31 26 25 21 20 16 15 11 10 6 5 0

15

Encoding I-type instructions

 The lw, sw and beq instructions all use the I-type encoding.

— rt is the destination for lw, but a source for beq and sw.

— address is a 16-bit signed constant.

 Two example instructions:

lw $t0, –4($sp)

sw $a0, 16($sp)

op rs rt address

6 bits 5 bits 5 bits 16 bits

100011 11101 01000 1111 1111 1111 1100

101011 11101 00100 0000 0000 0001 0000

16

Accessing data memory

 For an instruction like lw $t0, –4($sp), the base register $sp is added to

the sign-extended constant to get a data memory address.

 This means the ALU must accept either a register operand for arithmetic

instructions, or a sign-extended immediate operand for lw and sw.

 We’ll add a multiplexer, controlled by ALUSrc, to select either a register

operand (0) or a constant operand (1).

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

17

MemToReg

 The register file’s ―Write data‖ input has a similar problem. It must be

able to store either the ALU output of R-type instructions, or the data

memory output for lw.

 We add a mux, controlled by MemToReg, to select between saving the

ALU result (0) or the data memory output (1) to the registers.

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

18

RegDst

 A final annoyance is the destination register of lw is in rt instead of rd.

 We’ll add one more mux, controlled by RegDst, to select the destination

register from either instruction field rt (0) or field rd (1).

op rs rt address

lw $rt, address($rs)

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

19

 For branch instructions, the constant is not an address but an instruction

offset from the current program counter to the desired address.

beq $at, $0, L
add $v1, $v0, $0
add $v1, $v1, $v1
j Somewhere

L: add $v1, $v0, $v0

 The target address L is three instructions past the beq, so the encoding of

the branch instruction has 0000 0000 0000 0011 for the address field.

 Instructions are four bytes long, so the actual memory offset is 12 bytes.

Branches

000100 00001 00000 0000 0000 0000 0011

op rs rt address

20

The steps in executing a beq

1. Fetch the instruction, like beq $at, $0, offset, from memory.

2. Read the source registers, $at and $0, from the register file.

3. Compare the values by subtracting them in the ALU.

4. If the subtraction result is 0, the source operands were equal and the PC

should be loaded with the target address, PC + 4 + (offset x 4).

5. Otherwise the branch should not be taken, and the PC should just be

incremented to PC + 4 to fetch the next instruction sequentially.

21

Branching hardware

We need a second adder, since the ALU

is already doing subtraction for the beq.

Multiply constant

by 4 to get offset.

 PCSrc=1 branches

to PC+4+(offset4).

 PCSrc=0 continues

to PC+4.4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

22

The final datapath

4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

23

Control

 The control unit is responsible for setting all the control signals so that

each instruction is executed properly.

— The control unit’s input is the 32-bit instruction word.

— The outputs are values for the blue control signals in the datapath.

 Most of the signals can be generated from the instruction opcode alone,

and not the entire 32-bit word.

 To illustrate the relevant control signals, we will show the route that is

taken through the datapath by R-type, lw, sw and beq instructions.

24

R-type instruction path

 The R-type instructions include add, sub, and, or, and slt.

 The ALUOp is determined by the instruction’s ―func‖ field.

4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

25

lw instruction path

 An example load instruction is lw $t0, –4($sp).

 The ALUOp must be 010 (add), to compute the effective address.

4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

26

sw instruction path

 An example store instruction is sw $a0, 16($sp).

 The ALUOp must be 010 (add), again to compute the effective address.

4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

27

beq instruction path

 One sample branch instruction is beq $at, $0, offset.

 The ALUOp is 110 (subtract), to test for equality. The branch may

or may not be

taken, depending

on the ALU’s Zero

output

4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

28

Control signal table

 sw and beq are the only instructions that do not write any registers.

 lw and sw are the only instructions that use the constant field. They also

depend on the ALU to compute the effective memory address.

 ALUOp for R-type instructions depends on the instructions’ func field.

 The PCSrc control signal (not listed) should be set if the instruction is beq

and the ALU’s Zero output is true.

Operation RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg

add 1 1 0 010 0 0 0

sub 1 1 0 110 0 0 0

and 1 1 0 000 0 0 0

or 1 1 0 001 0 0 0

slt 1 1 0 111 0 0 0

lw 0 1 1 010 0 1 1

sw X 0 1 010 1 0 X

beq X 0 0 110 0 0 X

29

Generating control signals

 The control unit needs 13 bits of inputs.

— Six bits make up the instruction’s opcode.

— Six bits come from the instruction’s func field.

— It also needs the Zero output of the ALU.

 The control unit generates 10 bits of output, corresponding to the signals

mentioned on the previous page.

 You can build the actual circuit by using big K-maps, big Boolean algebra,

or big circuit design programs.

 The textbook presents a slightly different control unit.

Read

address

Instruction

memory

Instruction

[31-0]

Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero

30

Summary

 A datapath contains all the functional units and connections necessary to

implement an instruction set architecture.

— For our single-cycle implementation, we use two separate memories,

an ALU, some extra adders, and lots of multiplexers.

— MIPS is a 32-bit machine, so most of the buses are 32-bits wide.

 The control unit tells the datapath what to do, based on the instruction

that’s currently being executed.

— Our processor has ten control signals that regulate the datapath.

— The control signals can be generated by a combinational circuit with

the instruction’s 32-bit binary encoding as input.

 Next, we’ll see the performance limitations of this single-cycle machine

and try to improve upon it.

