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Lecture 6

 Machine language, the binary representation for instructions.

— We’ll see how it is designed for the common case

• Fixed-sized (32-bit) instructions

• Only 3 instruction formats

• Limited-sized immediate fields
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Assembly vs. machine language

 So far we’ve been using assembly language.

— We assign names to operations (e.g., add) and operands (e.g., $t0).

— Branches and jumps use labels instead of actual addresses.

— Assemblers support many pseudo-instructions.

 Programs must eventually be translated into machine language, a binary 

format that can be stored in memory and decoded by the CPU.

 MIPS machine language is designed to be easy to decode.

— Each MIPS instruction is the same length, 32 bits.

— There are only three different instruction formats, which are very 

similar to each other.

 Studying MIPS machine language will also reveal some restrictions in the 

instruction set architecture, and how they can be overcome.
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R-type format

 Register-to-register arithmetic instructions use the R-type format.

 This format includes six different fields.

— op is an operation code or opcode that selects a specific operation.

— rs and rt are the first and second source registers.

— rd is the destination register.

— shamt is only used for shift instructions.

— func is used together with op to select an arithmetic instruction. 

 The green card in the textbook lists opcodes and function codes for all of 

the MIPS instructions.

op rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
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About the registers

 We have to encode register names as 5-bit numbers from 00000 to 11111.

— For example, $t8 is register $24, which is represented as 11000.

— The complete mapping is given on page B-24 in the book.

 The number of registers available affects the instruction length.

— Each R-type instruction references 3 registers, which requires a total 

of 15 bits in the instruction word.

— We can’t add more registers without either making instructions longer 

than 32 bits, or shortening other fields like op and possibly reducing 

the number of available operations.

op rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
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I-type format

 Load, store, branch, and immediate instructions all use the I-type format.

 For uniformity, op, rs and rt are in the same positions as in the R-format.

 The meaning of the register fields depends on the exact instruction.

— rs is a source register—an address for loads and stores, or an operand 

for branch and immediate arithmetic instructions.

— rt is a source register for branches and stores, but a destination 

register for the other I-type instructions.

 The address is a 16-bit signed two’s-complement value.

— It can range from -32,768 to +32,767.

— But that’s not always enough!

op rs rt address

6 bits 5 bits 5 bits 16 bits
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Two’s complement (reminder)

 Easy to do in HW

— Most significant bit tells sign (sign bit)

— Addition can be done without anything special

 How?

— Invert all bits and add one
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 Larger constants can be loaded into a register 16 bits at a time.

— The load upper immediate instruction lui loads the highest 16 bits of a 

register with a constant, and clears the lowest 16 bits to 0s.

— An immediate logical OR, ori, then sets the lower 16 bits.

 To load the 32-bit value 0000 0000 0011 1101 0000 1001 0000 0000:

lui $s0, 0x003D # $s0 = 003D 0000 (in hex)
ori $s0, $s0, 0x0900 # $s0 = 003D 0900

 This illustrates the principle of making the common case fast.

— Most of the time, 16-bit constants are enough.

— It’s still possible to load 32-bit constants, but at the cost of two 

instructions and one temporary register.

 Pseudo-instructions may contain large constants. Assemblers including 

SPIM will translate such instructions correctly.

Larger constants
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 The limited 16-bit constant can present problems for accesses to global 

data.

 Suppose we want to load from address 0x10010004, which won’t fit in the 

16-bit address field.  Solution:

lui $at, 0x1001 # 0x1001 0000

lw $t1, 0x0004($at) # Read from Mem[0x1001 0004]

Loads and stores
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 For branch instructions, the constant field is not an address, but an offset

in words from the current program counter (PC) to the target address.

beq $at, $0, L

add $v1, $v0, $0
add $v1, $v1, $v1
j Somewhere

L: add $v1, $v0, $v0

 Since the branch target L is three instructions past the beq, the address 

field would contain 3. The whole beq instruction would be stored as:

 For some reason SPIM is off by one, so the code it produces would contain 

an address of 4. (But SPIM branches still execute correctly.)

Branches

000100 00001 00000 0000 0000 0000 0011

op rs rt address
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 Empirical studies of real programs show that most branches go to targets 

less than 32,767 instructions away—branches are mostly used in loops and 

conditionals, and programmers are taught to make code bodies short.

 If you do need to branch further, you can use a jump with a branch. For 

example, if “Far” is very far away, then the effect of:

beq $s0, $s1, Far

...

can be simulated with the following actual code.

bne $s0, $s1, Next

j Far
Next: ...

 Again, the MIPS designers have taken care of the common case first.

Larger branch constants
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J-type format

 Finally, the jump instruction uses the J-type instruction format.

 The jump instruction contains a word address, not an offset

— Remember that each MIPS instruction is one word long, and word 

addresses must be divisible by four.

— So instead of saying “jump to address 4000,” it’s enough to just say 

“jump to instruction 1000.”

— A 26-bit address field lets you jump to any address from 0 to 228.

• your MP solutions had better be smaller than 256MB

 For even longer jumps, the jump register, or jr, instruction can be used.

jr $ra # Jump to 32-bit address in register $ra

op address

6 bits 26 bits
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Summary of Machine Language

 Machine language is the binary representation of instructions:

— The format in which the machine actually executes them

 MIPS machine language is designed to simplify processor 

implementation

— Fixed length instructions

— 3 instruction encodings: R-type, I-type, and J-type

— Common operations fit in 1 instruction

• Uncommon (e.g., long immediates) require more than one
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Decoding Machine Language

How do we convert 1s and 0s to assembly language and to C 

code?

Machine language --> assembly  C?

For each 32 bits:

1. Look at opcode to distinguish between R- Format, JFormat, 

and I-Format

2. Use instruction format to determine which fields exist

3. Write out MIPS assembly code, converting each field to 

name, register number/name, or decimal/hex number

4. Logically convert this MIPS code into valid C code. Always 

possible? Unique?
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Decoding (1/7)

 Here are six machine language instructions in 

hexadecimal:

00001025hex

0005402Ahex

11000003hex

00441020hex

20A5FFFFhex

08100001hex

 Let the first instruction be at address 4,194,304ten

(0x00400000hex)

 Next step: convert hex to binary
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Decoding (2/7)

 The six machine language instructions in binary:

00000000000000000001000000100101

00000000000001010100000000101010

00010001000000000000000000000011

00000000010001000001000000100000

00100000101001011111111111111111

00001000000100000000000000000001 

 Next step: identify opcode and format
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Decoding (3/7)

 Select the opcode (first 6 bits) to determine the format:

000000 00000 00000 00010 00000 100101

000000 00000 00101 01000 00000 101010

000100 01000 00000 00000 00000 000011

000000 00010 00100 00010 00000 100000

001000 00101 00101 11111 11111 111111

000010 00000 10000 00000 00000 000001

 Look at opcode: 0 means R-Format, 2 or 3 mean J-Format, 

otherwise I-Format

 Next step: separation of fields R R I R I J Format:
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Decoding (4/7)

 Fields separated based on format/opcode:

 Next step: translate (“disassemble”) MIPS assembly 

instructions R R I R I J Format:



18

Decoding (5/7)

 MIPS Assembly (Part 1):

 Address: Assembly instructions:

0x00400000 or $2,$0,$0

0x00400004 slt $8,$0,$5

0x00400008 beq $8,$0,3

0x0040000c add $2,$2,$4

0x00400010 addi $5,$5,-1

0x00400014 j 0x100001
 Better solution: translate to more meaningful MIPS 

instructions (fix the branch/jump and add labels, registers)
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Decoding (6/7)

 MIPS Assembly (Part 2):

or $v0,$0,$0

Loop: slt $t0,$0,$a1

beq $t0,$0,Exit

add $v0,$v0,$a0

addi $a1,$a1,-1

j Loop

Exit:
 Next step: translate to C code (must be creative!)
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Decoding (7/7)

 Possible C code:

$v0: var1

$a0: var2

$a1: var3

var1 = 0;

while (var3 >= 0) {

var1 += var2;

var3 -= 1;

}

or $v0,$0,$0

Loop:  slt $t0,$0,$a1

beq $t0,$0,Exit

add $v0,$v0,$a0

addi $a1,$a1,-1

j Loop

Exit:
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strlen Example

void somefunc() {

char *str;

int a;

… 

/*uses t0, t1 somewhere */

…

a = strlen(str);

…

}

int strlen(char *str) {

int count = 0;

while (*s != 0) {

count++;

s++;

}

return count;

}

caller-saved: $t0-$t9, $a0-$a9, $v0-$v9. callee-saved: $s0-$s7, $ra
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strlen Example

void somefunc() {

char *str;

int a;

… 

/*uses t0, t1 somewhere */

…

a = strlen(str);

…

}

somefunc:

…

addi $sp, $sp, -12

sw   $ra, 8($sp)

sw   $t0, 4($sp)

sw   $t1, 0($sp)

add $a0, $t0, $0�
jal strlen

lw   $t1, 0($sp)

lw   $t0, 4($sp)

lw   $ra, 8($sp)

addi $sp, $sp, 12

jr $ra

int strlen(char *str) {

int count = 0;

while (*s != 0) {

count++;

s++;

}

return count;

}

strlen: 

addi $t0, $0, 0

loop:

lb $t1, 0($a0)

beq $t1, $0, end_loop

addi $t0, $t0, 1

addi $t1, $t1, 1

j loop

end_loop:

add $v0, $t0, $0

jr $ra

caller-saved: $t0-$t9, $a0-$a9, $v0-$v9. callee-saved: $s0-$s7, $ra


