Lecture 6

= Happy April 9t!
= Finish-up functions/stack
= Machine language, the binary representation for instructions.
— We'll see how it is designed for the common case
+ Fixed-sized (32-bit) instructions
« Only 3 instruction formats
« Limited-sized immediate fields D_\

Review

Why is jal special?

Why do we need to save registers?

Why a stack?

What is the stack used for?

The MIPS stack

= In MIPS machines, part of main memory is 0x7FFFFEFE
reserved for a stack.
— The stack grows downward in terms of stack
memory addresses. Ssp ——|
— The address of the top element of the —_ /7 l
stack is stored (by convention) in the

“stack pointer” register, $sp. (:oa'$ PO" .
MIPS does not provide “push” and “pop” 1}0,& ‘l 3 iv
instructions. Instead, they must be done
explicitly by the programmer. g’“’

celd [o00

Pushing elements

To push elements onto the stack:
— Move the stack pointer $sp down to

word 1

make room for the new data. Ssp —

word 2

— Store the elements into the stack.

For example, to push registers 5t1 and $t2
onto the stack:

sub 3sp, $sp, 8
sw o $tl, 4($sp)
sw 3$t2, 0($sp)

Before

An equivalent sequence is:

word 1

sw o Stl, -4($sp)

word 2

sw o §t2, -8($sp)
sub 3sp, $sp, 8

$5p —

w
™)

Before and after diagrams of the stack are

shown on the right.

After

Accessing and popping elements

= Youcan access any element in the stack a1
(not just the top one) if you know where it wor
is relative to $sp. word 2
= For example, to retrieve the value of 5t1: ot
Tw 3s0, 4(8sp) Ssp —] St2
= Youcan pop, or “erase,” elements simply
by adjusting the stack pointer upwards.
= To pop the value of 5t2, yielding the stack
shown at the bottom:
word 1
addi 3sp, 3Isp, 4
P P word 2
= Note that the popped data is still present N -
. . Ssp — St
in memory, but data past the stack pointer
is considered invalid. stz

Example

0x7FFFFFFF {)

at))

bewy, 7, <157 s

uid b) |

K3 ('a"-“-);
lv 30a % Gfe)

oy \:v.H [Jlf_\‘,

Stack Summary

We just focused on implementing function calls in MIPS.
— We call functions using jal, passing arguments in registers $a0-5a3.
— Functions place results in $v0-$v1 and return using jr $ra.
Managing resources is an important part of function calls.
— To keep important data from being overwritten, registers are saved
according to conventions for caller-save and callee-save registers.
— Each function call uses stack memory for saving registers, storing local
variables and passing extra arguments and return values.
Assembly programmers must follow many conventions. Nothing prevents a
rogue program from overwriting registers or stack memory used by some
other function.

Assembly vs. machine language

So far we’ve been using assembly language.
— We assign names to opmddb and operands (e.g., $t0).
— Branches and jumps use labels instead of actual addresses.
— Assemblers support many pseudo-instructions.

Programs must eventually be translated into machine language, a binary
format that can be stored in memory and decoded by the CPU.
MIPS machine language is designed to be easy to decode.
— Each MIPS instruction is the same length, 32 bits.
— There are only three different instruction formats, which are very
similar to each other.

Studying MIPS machine language will also reveal some restrictions in the
instruction set architecture, and how they can be overcome.

R-type format

-5

Register-to-register arithmetic instructions use the R-type format.

@ & [[@ [| g]
6bits (5bit) 5bits Sbits Sbits 6 bits

32545
This format includes six different fields.

— op is an operation code or opcode that selects a specific operation.

— rs and rt are the first and second source registers.

— rd is the destination register.

— shamt is only used for shift instructions.

— func is used together with op to select an arithmetic instruction.
The green card in the textbook lists opcodes and function codes for all of

the MIPS instructions.
¥ez ¥4 3> showmdt

sl_l. 49, iu/@

About the registers

= We have to encode register names as 5-bit numbers from 00000 to 11111.
— For example, $LB is register $24, which is represented as 11000.
— The complete mapping is give::)n page B-24 in the book.
= The number of registers available affects the instruction length.
— Each R-type instruction references 3 registers, which requires a total
of 15 bits in the instruction word.
— We can’t add more registers without either making instructions longer
than 32 bits, or shortening other fields like op and possibly reducing
the number of available operations.

o0ooo U100c Otosr Noos !
op | @ | rt ‘ rd | shamt | func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
— — —_—

all $29 ge0, bey
vd vsoovt

_|-type format

Load, store, branch, and immediate instructions all use the I-type format.

—= 505! 7
[{op)] X [rt [osdecdaddress

6Bits 5bits 5 bits 16 bits
oo V!

For uniformity, op, rs and rt are in the same positions as in the R-formal
The meaning of the register fields depends on the exact instruction.

— rs is a source register—an address for loads and stores, or an operand
for branch and immediate arithmetic instructions.
— rtis asource register for branches and stores, but a destination
register for the other I-type instructions.
The address is a 16-bit signed two’s-complement value.
— It can range from -32,768 to +32,767.
— But that's not always enoughl”

S Ox dend by f lui 149, 9x dogy

—

Two's complement (reminder)

Easy to do in HW

— Most significant bit tells sign (sign bit)

— Addition can be done without anything special
= How?

— Invert all bits and add one

0
00

bit twols-comy

el elele]e
e o nlnlelelen

1
0
0
00
1
1
0
[

cemmcomn

Larger constants

Larger constants can be loaded into a register 16 bits at a time.
— The load upper immediate instruction lui loads the highest 16 bits of a
register with a constant, and clears the lowest 16 bits to 0s.
— An immediate logical OR, ori, then sets the lower 16 bits.
To load the 32-bit value 0000 0000 0011 1101 0000 1001 0000 0000:

Jui $s0, 0x003D $s0

003D 0000 (in hex)
ori 3s0, $s0, 0x0900 % $s0

003D 0900

This illustrates the principle of making the common case fast.
— Most of the time, 16-bit constants are enough.
— It’s still possible to load 32-bit constants, but at the cost of two
instructions and one temporary register.
Pseudo-instructions may contain large constants. Assemblers including
SPIM will translate such instructions correctly.

Loads and stores

= The limited 16-bit constant can present problems for accesses to global
data.

= Suppose we want to load from address 0x10010004, which won't fit in the
16 -bit address field. Solution:

0x1001 0000
Read from Mem[0x1001 0004]

Tui $at, 0x1001
Tw $tl, 0x0004(3at)

e

Branches

For branch instructions, the constant field is not an address, but an offset
in words from the current program counter (PC) to the target address.

beq $at, $0, L
add $vi, 3vo, $0
add $vi1, $vi, $vi
a1 Somewhere

[Le add $vi, $v0, $vO

Since the branch target L is three instructions past the beq, the address
field would contain 3. The whole beq instruction would be stored as:

[[000100 | 00001 [00000 [0000 0000 0000 0011
op rs rt address

For some reason SPIM is off by one, so the code it produces would contain
an address of 4. (But SPIM branches still execute correctly.)

Larger branch constants

= Empirical studies of real programs show that most branches go to targets
less than 32,767 instructions away—branches are mostly used in loops and
conditionals, and programmers are taught to make code bodies short.

If you do need to branch further, you can use a jump with a branch. For
example, if “Far” is very far away, then the effect of:

beq $s0, $s1, Far

can be simulated with the following actual code.
bne $s0, 9s1, Next

3 Far
Next :

= Again, the MIPS designers have taken care of the common case first.

J-type format

= Finally, the jump instruction uses the J-type instruction format.

| op | address
6 bits 26 bits

= The jump instruction contains a word address, not an offset
— Remember that each MIPS instruction is one word long, and word
addresses must be divisible by four.
— So instead of saying “jump to address 4000,” it’s enough to just say
“jump to instruction 1000.”
— A 26-bit address field lets you jump to any address from 0 to 228,
« your MP solutions had better be smaller than 256MB

= For even longer jumps, the jump register, or jr, instruction can be used.

jr $ra # Jump to 32-bit address in register $ra

Summary of Machine Language

= Machine language is the binary representation of instructions:
—The format in which the machine actually executes them
= MIPS machine language is designed to simplify processor
implementation
— Fixed length instructions
— 3 instruction encodings: R-type, I-type, and J-type
— Common operations fit in 1 instruction
« Uncommon (e.g., long immediates) require more than one

R opcode| rs rt rd] shamtl funct
opcode| rs rt immediate
J [opcode target address

Decoding Machine Language

How do we convert 1s and Os to assembly language and to C
code?

Machine language --> assembly = C?

For each 32 bits:

1. Look at opcode to distinguish between R- Format, JFormat,
and |-Format

2. Use instruction format to determine which fields exist
3. Write out MIPS assembly code, converting each field to
name, register number/name, or decimal/hex number

4. Logically convert this MIPS code into valid C code. Always
possible? Unique?

Decoding (1/7)

Here are six machine language instructions in
hexadecimal:

00001025,
00054024,
11000003, .,
00441020, .,
20A5FFFF, .,
08100001, .,

Let the first instruction be at address 4,194,304
(0x00400000hex)

Next step: convert hex to binary

ten

Decoding (2/7)

= The six machine language instructions in binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

= Next step: identify opcode and format

R 0 rs rt rd_|shamt| funct
111,4-62 rs rt immediate
J|2o0r3 target address

Decoding (3/7)

«—

Select the opcode (first 6 bits) to determine the format:
000000 00000 00000 00010 00000 100101
000000 00000 00101 01000 00000 101010
000100 01000 00000 00000 00000 000011
000000 00010 00100 00010 00000 100000
001000 00101 00101 11111 11111 111111
000010 00000 10000 00000 00000 000001

Look at opcode: 0 means R-Format, 2 or 3 mean J-Format,
otherwise |-Format

Next step: separation of fields RR I R | J Format:

0 rs rt rd [shamtl funct
1,4-62| rs rt immediate
2o0r3 target address 22

Decoding (4/7)

= Fields separated based on format/opcode:

Decoding (5/7)

Format:

R 0 0 0 2 0 37
R 0 0 5 8 0 42
[4 8 0 +3

R 0 2 4 2 | o | 32
[8 5 5 -1

J 2 1,048,577

= Next step: translate (“disassemble”) MIPS assembly
instructions RR I R I J Format:

23

MIPS Assembly (Part 1):
Address: Assembly instructions:

0x00400000 or $2,50,50
0x00400004 slt $8,50,55
0x00400008 beq $8,$0,3
0x0040000c add $2,52,$4
0x00400010 addi $5,55,-1
0x00400014 j 0x100001

Better solution: translate to more meaningful MIPS
instructions (fix the branch/jump and add labels, registers)

24

Decoding (6/7)

= MIPS Assembly (Part 2):

or
Loop: slt

$v0,50,50
$t0,50,5a1

beq 5t0,%0,Exit
add $v0,$v0,%a0
addi $a1,%a1,-1

j
Exit:

Loop

= Next step: translate to C code (must be creativel)

25

Decoding (7/7)

= Possible C code:

$v0: vart
$a0: var2
Saf: var3

vart = 0;

while (var3 >= 0) {
vart += var2;
var3 -=1;

or $v0,50,50
Loop: slt $t0,%0,%a1
beq 5t0,50,Exit
add $v0,%v0,5a(
addi $at,$at,-1
j Loop
Exit:

strlen Example

void somefunc() (
char *str.
int a;
Jiuses t0, tl somewhere i/

& = strlen(str):

caller-saved: $10-5t9, Sa0-3a8, Sv0-$v9. calles-saved

int strlenichar *ser) (
int cownt = 0;
vhile (s 1= 0) {
count+;
s+

3
retwn count:

550-557, Sra

26
strlen Example
void sometuncl) (int stalen(char Tstz) (
Shat +atr Lne sount - 0
int a; while (*s !=0) {
pr
Jeuses 10, t1 sousvnere o
}
3 - serlmisen)s Yewurn councs
¥
serien:
s 60, 50, 0
sonetunc:
Loop:
wass sop, sy, 12 1 cu1, ogean)
A beq 4l 40, =nd_Loop
ot ateen cali eh, th0, 1
W eul olesy) sa g1, s, 1
T ca0, 50, 6 $ oo
Jal secien
1T ogeer)
W cn) alesy) ent_soop:
I éra, Siéop] wad fo0, 40, 0
edas 55, s, L2 S era
St
28

caller-saved: $10-5t9, Sa0-$ad, Sv0-5v9. calles-saved: $0-$7, Sra

