
1

CSE378 – Lecture 4

  Announcements
— HW1 out

  Today:
— Finish-up control-flow

•  if/then
•  loops
•  case/switch

— Array Indexing vs. Pointers
•  In particular pointer arithmetic
•  String representation

2

.text
main:

 li $a0, 0x1234 ## input = 0x1234
 li $t0, 0 ## int count = 0;
 li $t1, 0 ## for (int i = 0

main_loop:
 bge $t1, 32, main_exit ## exit loop if i >= 32

 andi $t2, $a0, 1 ## bit = input & 1
 beq $t2, $0, main_skip ## skip if bit == 0

 addi $t0, $t0, 1 ## count ++

main_skip:
 srl $a0, $a0, 1 ## input = input >> 1
 add $t1, $t1, 1 ## i ++

 j main_loop

main_exit:
 jr $ra

  Let’s write a program to count how many bits are set in a 32-bit word.

Control-flow Example

int count = 0;
for (int i = 0 ; i < 32 ; i ++) {
 int bit = input & 1;
 if (bit != 0) {
 count ++;
 }
 input = input >> 1;
}

  If there is an else clause, it is the target of the conditional branch
—  And the then clause needs a jump over the else clause

 // increase the magnitude of v0 by one
 if (v0 < 0) bge $v0, $0, E
 v0 --; sub $v0, $v0, 1
 j L
 else
 v0 ++; E: add $v0, $v0, 1
 v1 = v0; L: move $v1, $v0

—  Drawing the control-flow graph can help you out.

3

Translating an if-then-else statements

4

Case/Switch Statement

  Many high-level languages support multi-way branches, e.g.

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

  We could just translate the code to if, thens, and elses:

 if ((two_bits == 1) || (two_bits == 2)) {
 count ++;
 } else if (two_bits == 3) {
 count += 2;
 }

  This isn’t very efficient if there are many, many cases.

5

Case/Switch Statement

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

  Alternatively, we can:
1.  Create an array of jump targets
2.  Load the entry indexed by the variable two_bits
3.  Jump to that address using the jump register, or jr, instruction

6

Representing strings

  A C-style string is represented by an array of bytes.
—  Elements are one-byte ASCII codes for each character.
—  A 0 value marks the end of the array.

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

7

Null-terminated Strings

  For example, “Harry Potter” can be stored as a 13-byte array.

  Since strings can vary in length, we put a 0, or null, at the end of the string.
—  This is called a null-terminated string

  Computing string length
—  We’ll look at two ways.

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

8

int foo(char *s) { 	
 int L = 0; 	
 while (*s++) { 	

++L; 	
 } 	
 return L; 	
}	

What does this C code do?

9

Array Indexing Implementation of strlen

int strlen(char *string) {
 int len = 0;
 while (string[len] != 0) {
 len ++;
 }
 return len;

}

10

Pointers & Pointer Arithmetic

  Many programmers have a vague understanding of pointers
— Looking at assembly code is useful for their comprehension.

•  (But if you have an aggressive optimizing compiler, you may see
the same assembly code for both versions!)

int strlen(char *string) {
 int len = 0;
 while (string[len] != 0) {
 len ++;
 }
 return len;

}

int strlen(char *string) {
 int len = 0;
 while (*string != 0) {
 string ++;
 len ++;
 }
 return len;

}

11

What is a Pointer?

  A pointer is an address.
  Two pointers that point to the same thing hold the same address
  Dereferencing a pointer means loading from the pointer’s address
  In C, a pointer has a type; the type tells us what kind of load to do

— Use load byte (lb) for char *
— Use load half (lh) for short *
— Use load word (lw) for int *
— Use load single precision floating point (l.s) for float *

  Pointer arithmetic is often used with pointers to arrays
—  Incrementing a pointer (i.e., ++) makes it point to the next element
— The amount added to the point depends on the type of pointer

•  pointer = pointer + sizeof(pointer’s type)
 1 for char *, 4 for int *, 4 for float *, 8 for double *

12

What is really going on here…

int strlen(char *string) {
 int len = 0;

 while (*string != 0) {
 string ++;
 len ++;
 }

 return len;
}

13

Pointers Summary

  Pointers are just addresses!!
—  “Pointees” are locations in memory

  Pointer arithmetic updates the address held by the pointer
—  “string ++” points to the next element in an array
—  Pointers are typed so address is incremented by sizeof(pointee)

13

