CSE378 - Lecture 3

= Announcements s
—HW!1 out today or Monday, due April 14. TC’) \ F ‘ (_J
- 7 I
= Today:
—Finish up memory &~
— Control-flow (branches) in MIPS
< ifthen
+ loops
+ case/switch
— (maybe) Start: Array Indexing vs. Pointers
+ In particular pointer arithmetic
+ String representation

Quick Review

= Registers x Memory

by 5 b2 0%

pto
Iw $t0, 2z bels

$a0 is simply another name for register 4
$t0is another name for register & (green sheet)

What does $a0 contain? ‘) ase a‘\é ress

What will $t0 contain after the instruction is executed? (address)

Upperflower bytes in & register (Iui example)
—_— -

\

Control flow in high-level languages

The instructions in a program usually execute one after another, but it's
often necessary to alter the normal control flow.

Conditional statements execute only if some test expression is true.
.

// Find the absolute value of a0
v0 = a0; "
if 5
v0 = —vo;e” // This might not be executed
&Vl = v0 + voO;

Loops cause some statements to be executed many times.
—_—

// Sum the elements of a five-slement array a0
L90 = 0;
Yeo = o;

while €0 <3 (

v0 = vO + a0[t0]; // These statements will
0++; // be executed five times

c€a Control-flow graphs

Bosic Hlock A

ind the absolute value of a0
A = —]<)
ir %0 <0
vo = =vo; | B
C [vl = v0 + v0;
// Sum the elements of a0
: |2
"o)
5 B
C

MIPS_control instructions

= MIPS's control-flowinstructions) 16
ol .
-2 j ¢ I for unconditional jumps) - ql&lrs(
_7 bneandbeq //for conditional branches
N\-L‘p/vslt and §Ib I setifless than (w/o and w an immediate)

e A=

= Now we'll talk about 0
— MIPS’s pseudo branches — ©
— fflelse -
— case/switch —_ F
[rd

sH 85 42,42 ¢ . L

\(’(}l Z $'$) N

§i <1 Qoyronn _

:lu“_- o Cﬂh.,\lv

Pseudo-branches

= The MIPS processor only supports two branch instructions, beq and bne, but
to simplify your life the assembler provides the following other branches:

<) ¥4ts, bod

=3 FIE S0 S¥ll T // Branch if $t0 < Stl
Bia ten =S TD 1] Perein G (BT Tl bne “"bl'-
bgt $t0, $tl, L3 // Branch if $t0 > $tl
bge §t0, $tl, L4 // Branch if $t0 >= $tl

= There are also immediate versions of these branches, where the second
source is a constant instead of a register.

= Later this quarter we'll see how supporting just beq and bne simplifies the
processor design.

Implementing pseudo-branches
= Most pseudo-branches are

, Sfghe d
mplemented
it-less-than instruction b1t ‘

. For example, a branch-
¢
following. :——)

g translated into the
st $at, $a0, $al J/ $at = 1 if $a0 < §a1 Lohv)i—
bne S$at, $0, Label // Branch if $at !'= 0 —

= This supports immediate branches, which are also pseudo-instructions.
For example, b1ti $a0, 5, Label is translated into two instructions.

):lti $at, $a0, 5 // $at =1 if $a0 < 5
bne $at, $0, Label // Branch if $a0 < 5

= All of the pseudo-branches need a register to save the result of slt, even
though it's not needed afterwards.

— MIPS assemblers use register $1, or $at, for temporary storage.

— You should be careful in using $at in your own programs, as it may be
overwritten by assembler-generated code.

Translating an if-then statement

We can use branch instructions to translate if-then statements into MIPS
assembly code.

v0
it

move §v0 $a0

ge $v0, $0, Label

sub $v0,90, $vo
Label: add $vl, $v0, $vO0

T vi=v0+ vo;

Sometimes it's easier to invert the original condition.
— In this case, we changed “continue if v0 < 0" to “skip if v0 >= 0"
— This saves a few instructions in the resulting assembly code.
Wiove iv:l $09
— bt v, Yo, LI
Jez
Ld: s Juoto sus
L2 odd 14,4\ 4 vo

What does this code do?

(7 label: subi $a0, $a0, 1
bne $a0, $zero, label

| vops b Hues

wax (3, {O8)

Loops

—> Loop: j Loop

'°°f5 A;/Nw
X2 g

goto Loop

QD (&€
for (i=0:i<4;i+H{
11 stuff
}
$10, $zero, $zero #i is initialized to 0, $t0 =0 =& jLD,,‘ q ko
be s+
$1, $10,
siti §t1, §t0, 4 i @ 1/ SLU.H-
bne $t1, $zero,Loop #gotoLoopTri<4 ,,é; i
e

Control-flow Example

= Let’s write a program to count how many bits are setin a 32-bit word.

d .text
<3250+ 0 | pain:
input & 1;
=0){ li $20, 0x1234 #4 input=0%1234
eount +¥; li $10,0 ##int count=0;
}) i $t1,0 ##for (inti=0
input=input >> 1;
main_loop:
bge $t1, 32, main_exit ## exitloop ifi>=32
andi $12,$20,1 ## bit = input & 1
beq $12,$0. main_skip ## skip if bit==0
addi $10,$10,1 ## count++
main_skip:
srl $20,$20, 1 ## input= input>> 1
add $t1, 911, 1 B+
j main_loop
main_exit:
it $ra

Translating an if-then-else statements

Ifthere is an else clause, it is the target of the conditional branch
— And the then clause needs a jump over the else clause

// increase the magnitude of v0 by one
if (v0 < 0) bge §v0, $0, E

.y sub §v0, §vO0, 1
3 L
else
v0 ++ E: add §v0, $v0, 1
L:

move §vi, §v0

— Drawing the control-flow graph can help you out.

Case/Switch Statement

= Many high-level languages support multi-way branches, e.g.

switeh (two_bits) {

case 0: break:

case 1 /* fall through */
case 2: count ++; break;
case 3 count += 2; break

Case/Switch Statement

switeh (two_bits) {

case 0: break:

case 1 /* fall through */
case 2: count ++; break;
case 3 count += 2; break

= We could justtranslate the code to if, thens, and elses:

if ((two_bits == 1) || (two_bits == 2)) |
count ++

} else if (two_bits == 3) {
count += 2

)

= This isn't very efficient if there are many, many cases.

= Alternatively, we can:
1. Create an array of jump targets
2. Loadthe entry indexed by the variable two_bits
3. Jump to that address using the jump register, or jr, instruction

Null-terminated Strings

13
Representing strings
= A C-style string is represented by an array of bytes.
— Elements are one-byte ASCII codes for each character.
— A 0value marks the end of the array.
32 space| [48 o [ed @] [s0 P [M2 p
33 a1 fes allsr af|w all13 a
34 » 0 z||s6 Blfsz R|[98 b |14 r
35 # 51 3|7 cffez s el s
36 H 52 4||ss8 Dffea T||wo d]|re ot
k4 % 532 5| |es Elfes w1 e]|n7 w
8 & 54 6|70 Flfee w[]wz][t v
39 ’ s5 7| |71 6| fer w03 gty w
40 (s6 g||7z H[|es x||w04a n|[120 x
41) 57 9|73 iffee v[fws][ty
42 N 58 | |74 Jffeo z||we g||12z =z
43 + 59 3|75 k| fer 0] |7 k| |23 {
44 , 60 <||76 L|fez | |wB 1]]|124 |
45 st =||77 m[fez 1||w0e m||1zs 3
46 . 62 »| |78 nffoa | |t0 n]f126 -
47 / 63 7| |79 offos | [t o [127 el
15

= For example, “Harry Potter” can be stored as a 13-byte amray.

[72 o7 [ttt 2 J oo J1ta] 16| 16 [1ot] 114] 0|
H a r r y P o t t e ro\0

= Since strings can vary in length, we put a 0, or null, atthe end of the string.
— This is called a null-terminated string

= Computing string length
— We'll look at two ways.

What does this C code do?

int foo(char *s) {
intL=0;
while (*s++) {
++L;
return L;

}

Array Indexing Implementation of strlen

intstrlen(char *string) {
intlen = 0;
while (string[len] 1= 0) {
len ++;
3
return len;

3

Pointers & Pointer Arithmetic

Many programmers have a vague understanding of pointers
— Looking at assembly code is useful for their comprehension.

+ (Butif you have an aggressive optimizing compiler, you may see
the same assembly code for both versions!)

int strlen(char *string) { int strlen(char *string) {

What is a Pointer?

A pointer is an address.

Twe pointers that point to the same thing hold the same address
Dereferencing a pointer means loading from the pointer's address
In C, a pointer has a type; the type tells us what kind of load to do
—Use load byte (Ib) for char *

—Use load half (Ih) for short ™

—Use load word (Iw) for int *

—Use load single precision floating point (l.s) for float *
Pointer arithmetic is often used with pointers to arrays

— Incrementing a pointer (i.e., ++) makes it point to the next element
— The amount added to the point depends on the type of pointer
+ pointer = pointer + sizeof(pointer’s type)
» 1 for char*, 4 forint *, 4 for float *, 8 for double *

20

int len = 0; int len = 0;
while (string[len] != 0) { while (*string 1= 0) {
len ++; string ++;

3 len ++;
return len; 3

3 return len;

3
19
What is really going on here...
int strlen(char *string) {
intlen =0;

while (*string = 0) {
string ++;
len ++;

return len;

Pointers Summary

Pointers are just addresses!!

— “Pointees” are locations in memory
Pointer arithmetic updates the address held by the pointer

— “string ++” points to the next elementin an array

— Pointers are typed so address is incremented by sizeof(pointee)

27

