

Name ______________________________________

Do Not Open The Test
Until Told To Do So

Midterm Exam – CSE378 Autumn 2008 Anderson

This is closed book, closed notes, closed calculator and closed neighbor.

1. [3 points] If x = 0011 1010 1010 1001 0101 0011 1011 1100 what is –x
in binary?

2. [3 points] Covert the hexadecimal number 3D2AE1F7 to binary representation.

3. [3 points] MIPS calling conventions reserves registers for passing arguments to a

function. Give their names: ____________________

4. [5 points] Write MIPS assembly code to put 0x1234ABCD into register $1.

5. [4 points] With a beq instruction it is possible to branch to addresses in what
range?

5. [5 points] Using the “green card”, translate the following machine code into MIPS
code – be sure to include the correct register names, addresses, immediate values,
etc. represented in the order they would appear in the MIPS instruction.
(Hint: mark the boundaries between the instruction’s fields.)

1010 1101 1010 1001 0000 0000 0011 0010 _______________________

6. [5 points] MIPS hardware does not directly implement the pseudo-instruction:
 bge $7, $8, location

but rather the assembler generates appropriate real instructions that implement this
behavior. Show the kind of MIPS code it might create for this instruction.

7. [7 points total] a) Suppose that $t0 holds the base address of an array of integers,
A. Give MIPS code that loads the value of A[5] into register $t2. (Hint: You
can do this inn one instruction.)

 b) Suppose that $t0 holds the base address of an array of integers, A, and $t1
holds the current value of an integer, n. Give MIPS code that loads the value of
A[n] into register $t2.

8. [5 points] Function A calls function B. Function B calls function C. Function A
cares about the values it has stored in registers $s0 and $s1. Function B does not
use registers $s0 and $s1. Function C does use registers $s0 and $s1.

a. Who, if anyone should save registers $s0 and $s1?

b. Who, if anyone should restore registers $s0 and $s1?

c. If someone were going to save registers $s0 and $s1, where should they

save them?

9. [25 points] Write a MIPS function that finds the two largest values in the array
int A[n]. Assume $a0 contains the address of A, and $a1 contains n, the
number of elements in array A. You should place the largest value in $v0 and the
second largest in $v1. You may use pseudo instructions for this question.

10. [7 points] In the diagram below, highlight in color those portions of the circuit
that are active when computing the address for a branch instruction. (Note, other
portions will be active in this single cycle implementation; mark only those
portions that contribute to the address calculation, including control.)

11. [3 points] Give the control lines (but not their settings) that need to be used to
implement the whole branch instruction above.

12. [7 points] In the accompanying diagram mark in color those portions of the circuit
active during the second cycle of our multicycle processor design.

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

