
1

Lecture 20

 Virtual Memory

 Pick up your exam.

2

Virtual Memory

 Because different processes will have different mappings from virtual to

physical addresses, two programs can freely use the same virtual

address.

 By allocating distinct regions of physical memory to A and B, they are

prevented from reading/writing each others data.

V
ir

tu
a
l
A
d
d
re

ss

Physical

Memory

Disk

V
irtu

a
l A

d
d
re

ss
Program A Program B

3

Finding the right page

 If it is fully associative, how do we find the right page without scanning

all of memory?

— Use an index, just like you would for a book.

 Our index happens to be called the page table:

— Each process has a separate page table

• A “page table register” points to the current process’s page table

— The page table is indexed with the virtual page number (VPN)

• The VPN is all of the bits that aren’t part of the page offset.

— Each entry contains a valid bit, and a physical page number (PPN)

• The PPN is concatenated with the page offset to get the physical

address

— No tag is needed because the index is the full VPN.

4

Page Table picture

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

5

How big is the page table?

 From the previous slide:

— Virtual page number is 20 bits.

— Physical page number is 18 bits + valid bit -> round up to 32 bits.

 How about for a 64b architecture?

6

Dealing with large page tables

 Multi-level page tables

— “Any problem in CS can be solved by adding a level of indirection”

or two…

 Since most processes don’t use the whole address space, you don’t
allocate the tables that aren’t needed

— Also, the 2nd and 3rd level page tables can be “paged” to disk.

VPN1 VPN2 VPN3 offset

Page Table

Base Pointer

PPN

PPN offset

1st

2nd

3rd

A 3-level page table

7

8

Waitaminute!

 We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]

— i.e., 4 memory accesses

 And we haven’t talked about the bad case yet (i.e., page faults)…

“Any problem in CS can be solved by adding a level of indirection”

— except too many levels of indirection…

 How do we deal with too many levels of indirection?

9

Caching Translations

 Virtual to Physical translations are cached in a Translation Lookaside

Buffer (TLB).

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

10

What about a TLB miss?

 If we miss in the TLB, we need to “walk the page table”

— In MIPS, an exception is raised and software fills the TLB

— In x86, a “hardware page table walker” fills the TLB

 What if the page is not in memory?

— This situation is called a page fault.

— The operating system will have to request the page from disk.

— It will need to select a page to replace.

• The O/S tries to approximate LRU (see CS423)

— The replaced page will need to be written back if dirty.

11

Memory Protection

 In order to prevent one process from reading/writing another process’s

memory, we must ensure that a process cannot change its virtual-to-

physical translations.

 Typically, this is done by:

— Having two processor modes: user & kernel.

• Only the O/S runs in kernel mode

— Only allowing kernel mode to write to the virtual memory state, e.g.,

• The page table

• The page table base pointer

• The TLB

12

Sharing Memory

 Paged virtual memory enables sharing at the granularity of a page, by

allowing two page tables to point to the same physical addresses.

 For example, if you run two copies of a program, the O/S will share the

code pages between the programs.

V
ir

tu
a
l
A
d
d
re

ss

Physical

Memory

Disk

V
irtu

a
l A

d
d
re

ss
Program A Program B

13

Summary

 Virtual memory is great:

— It means that we don’t have to manage our own memory.

— It allows different programs to use the same memory.

— It provides protect between different processes.

— It allows controlled sharing between processes (albeit somewhat

inflexibly).

 The key technique is indirection:

— Yet another classic CS trick you’ve seen in this class.

— Many problems can be solved with indirection.

 Caching made a few appearances, too:

— Virtual memory enables using physical memory as a cache for disk.

— We used caching (in the form of the Translation Lookaside Buffer) to

make Virtual Memory’s indirection fast.

