
1

Lecture 20

 Virtual Memory

 Pick up your exam.



2

Virtual Memory

 Because different processes will have different mappings from virtual to 

physical addresses, two programs can freely use the same virtual 

address.

 By allocating distinct regions of physical memory to A and B, they are 

prevented from reading/writing each others data. 

V
ir

tu
a
l 
A
d
d
re

ss

Physical 

Memory

Disk

V
irtu

a
l A

d
d
re

ss
Program A Program B



3

Finding the right page

 If it is fully associative, how do we find the right page without scanning 

all of memory?

— Use an index, just like you would for a book.

 Our index happens to be called the page table:

— Each process has a separate page table

• A “page table register” points to the current process’s page table

— The page table is indexed with the virtual page number (VPN)

• The VPN is all of the bits that aren’t part of the page offset.

— Each entry contains a valid bit, and a physical page number (PPN)

• The PPN is concatenated with the page offset to get the physical 

address

— No tag is needed because the index is the full VPN.



4

Page Table picture

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not


present in memory

Page table register

Page table

20 12

18

31  30  29  28  27  15  14  13  12  11  10  9  8 3  2  1  0

29  28  27 15  14  13  12  11  10  9  8 3  2  1  0



5

How big is the page table?

 From the previous slide:

— Virtual page number is 20 bits.

— Physical page number is 18 bits + valid bit -> round up to 32 bits.

 How about for a 64b architecture?



6

Dealing with large page tables

 Multi-level page tables

— “Any problem in CS can be solved by adding a level of indirection”

or two…

 Since most processes don’t use the whole address space, you don’t 
allocate the tables that aren’t needed

— Also, the 2nd and 3rd level page tables can be “paged” to disk.

VPN1 VPN2 VPN3 offset

Page Table 

Base Pointer

PPN

PPN offset

1st

2nd

3rd

A 3-level page table



7



8

Waitaminute!

 We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]

— i.e., 4 memory accesses

 And we haven’t talked about the bad case yet (i.e., page faults)…

“Any problem in CS can be solved by adding a level of indirection”

— except too many levels of indirection…

 How do we deal with too many levels of indirection?



9

Caching Translations

 Virtual to Physical translations are cached in a Translation Lookaside 

Buffer (TLB).

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte

offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB







Physical address

31 30 29  15 14 13 12 11 10 9 8  3 2 1 0 



10

What about a TLB miss?

 If we miss in the TLB, we need to “walk the page table”

— In MIPS, an exception is raised and software fills the TLB

— In x86, a “hardware page table walker” fills the TLB

 What if the page is not in memory?

— This situation is called a page fault.

— The operating system will have to request the page from disk.

— It will need to select a page to replace.

• The O/S tries to approximate LRU (see CS423)

— The replaced page will need to be written back if dirty.



11

Memory Protection

 In order to prevent one process from reading/writing another process’s 

memory, we must ensure that a process cannot change its virtual-to-

physical translations.

 Typically, this is done by:

— Having two processor modes: user & kernel.

• Only the O/S runs in kernel mode

— Only allowing kernel mode to write to the virtual memory state, e.g.,

• The page table

• The page table base pointer

• The TLB



12

Sharing Memory

 Paged virtual memory enables sharing at the granularity of a page, by 

allowing two page tables to point to the same physical addresses.

 For example, if you run two copies of a program, the O/S will share the 

code pages between the programs.

V
ir

tu
a
l 
A
d
d
re

ss

Physical 

Memory

Disk

V
irtu

a
l A

d
d
re

ss
Program A Program B



13

Summary

 Virtual memory is great:

— It means that we don’t have to manage our own memory.

— It allows different programs to use the same memory.

— It provides protect between different processes.

— It allows controlled sharing between processes (albeit somewhat 

inflexibly).

 The key technique is indirection:

— Yet another classic CS trick you’ve seen in this class.

— Many problems can be solved with indirection.

 Caching made a few appearances, too:

— Virtual memory enables using physical memory as a cache for disk.

— We used caching (in the form of the Translation Lookaside Buffer) to 

make Virtual Memory’s indirection fast.


