Lecture 20

= Virtual Memory A
= Pick up your exam.

Virtual Memory

= Because different processes will have different mappings from virtual to

physical addresses, two programs can freely use the same virtual
address.

= By allocating distinct regions of physical memory to A and B, they are
prevented from reading/writing each others data.

Program A Physical

Memory
0 <
0 + | =
5 £
T =
: 2
2 o
o ®
> s

Finding the right page

If it is fully associative, how do we find the right page without scanning
all of memony?

— Use an index, just like you would for a book.

o AL

Qurindex happens to be called the page table: f’ 3 "Hbl’(
— Each process has a separate page table

+ A"page table register” points to the current process’s page table
— The page table is indexed with the virtual page number [WPN)

+ The WPM is all of the bits that aren’t part of the page offset.
— Each entry contains avalid bit, and a physical page numbear [FPMN)

+ The PPN is concatenated with the page offset to get the physical

addrass " LQ coifé Vv

— Mo tag is needed because the index is the full YPM.
—2%kds VeN V‘”‘”“”'T

— PPNV

V.A. Tven

e
20 LY, 12

'
C.A Toen [@o]

Page Table picture

— | leﬁﬁs OF .?-rt. Page table register s

Witual address
31329 22T seseraraaaraaaaies 15 1413 12 11 109 8 e 2210
UPN Wirtual page number (tl) Fage offset V . A .
e __ .
XE 3
W alid Physical page number

(5t srem 12
' S 2

!
|'
::
[] E .*e
|'
|'
|'

.|

Fage table

Yk

(@)
If0 then page i noto
present in memony

20 28 2T serineranananias v 16 14 13 12 11 109 8. = 3210
FPhysical page number Fage offset ? A
—— -

Phvzical address

How big is the page table?

= From the previous slide: V.4 => 9T p,is
— Virtual page number is 20 bits.
— Physical page number is 18 bits + valid bit -> round up to 32 bits.

22-12 = 20 b
P-si 2¢ qéh%
1>
?-T emhies = 2 =) Wege Pages
20

Pt Sfwec 2 ~9= 4 MB 7.

» How about for a 64b architecture? P Sice =G K [3
CY-12= s2 g5 VEp baw

'1‘51,(Y= 10 93}:‘91..(5 1’-"‘/ <*

Dealing with large page tables

= Multi-level page tables U Aérﬂﬁ‘i‘ SPocte
— “Any problem in C5can be solved by adding a level of indirection” —
P Or two...
Page Table Znd
Base Pointer et Zrd -

A a-evel page table

—

FPM

PPM offset

VA. _ . | vent | venz | wens | offset

= Since most processes don’t use the whale address space, you don’t
allocate the tables that aren’t needed

— Also, the Znd and 3rd level page tables can be “paged” to disk.

(L 1z s ze ai sfcee

VA | | | . v = GG
Eﬂkl NPMZ Va3 P-O. i3 ¢ ({ B
v e 213 low |,
o
eewn
wYy3
207

v pile

; ; hies
Waitaminute! ew

= We've just replaced every memory access MEM[addr] with:

zw»r
{ |
MEMl'&EMl;MEM[MEM!PTBR + VPN1:2] + VPN2<<2](¢PN3 +
— i.e., 4 memory accesses 1]

[‘)re-l-ua‘ VWAL 0 C0Ceg 5 303
» And we haven’t talked about the bad case yet (i.e., page faults)...

—

“Any problem in CS can be solved by adding a level of indirection”
— except too many levels of indirection...

= How do we deal with too many levels of indirection?

V4 = ¢.A.
L

(ACHE Wy

Caching Translatiggs

= Virtual to Physical translations are cached in a Translation Lookaside
Buffer (TLB). R

02D ceveraae 1141212 110 98 v e 3210

. J_ “Artual page numb er | Page offsat |
‘s
(2 ?_u,lﬂl T | T2 "r L B
/ “walid i e 134 Phyzical page number
TLB [A
c‘l“\f TLB hit +—f g: u H:{ .I_
. - = strveture
RssocieN AL = -
_-.'-—.—l—— o 1l

¢

PA. -] |
P'A # th‘lsiczlz drass g = |+i ;gﬂ

“alid Tag Data

Cache

Cache hit +—{ I:] Data

What about a TLB miss?

If we miss in the TLB, we need to “walk the page table’

In MIPS, an exception is raised and software fills the TLB e
In x86, a “hardware page table walker” fills the TLB

What if the page is not in memory? —

This situation is called a page fault.
The operating system will have to request the page from disk.
It will need to select a page to replace. ysi
+ The O/S tries to approximate LRU (see CS423)
The replaced page will need to be written back if dirty.

10

Memory Protection

In order to prevent one process from reading/writing another process’s
memory, we must ensure that a process cannot change its virtual-to-

physical translations.
Typically, this is done by: v IV
— Having two processor modes: user & kernel.
+ Only the O/S runs in kernel mode
— Only allowing kernel mode to write to the virtual memory state, e.g.,

¢ The page table
+ The page table base pointer

+ The TLB

"

Sharing Memory

Paged virtual memory enables sharing at the granularity of a page, by
allowing two page tables to point to the same physical addresses.

For example, if you run two copies of a program, the O/S will share the
code pages between the programs.

Program A Physical

Memory
9 <
i —
5 £
T =
: 2
2 o
o ®
> s

12

Summary

= Virtual memory is great:
— It means that we don’t have to manage our own memory.
— It allows different programs to use the same memory.
— It provides protect between different processes.

— It allows controlled sharing between processes (albeit somewhat
inflexibly).

= The key technique is indirection:
— Yet another classic CS trick you’ve seen in this class.
— Many problems can be solved with indirection.
= Caching made a few appearances, too:
— Virtual memory enables using physical memory as a cache for disk.

— We used caching (in the form of the Translation Lookaside Buffer) to
make Virtual Memory’s indirection fast.

13

