
1

Lecture 18

 Midterm discussion

 Reducing miss penalty

2

Basic main memory design

 There are some ways the main memory can be organized to reduce miss

penalties and help with caching.

 For some concrete examples, let’s assume the following

three steps are taken when a cache needs to load data

from the main memory.

1. It takes 1 cycle to send an address to the RAM.

2. There is a 15-cycle latency for each RAM access.

3. It takes 1 cycle to return data from the RAM.

 In the setup shown here, the buses from the CPU to the

cache and from the cache to RAM are all one word wide.

 If the cache has one-word blocks, then filling a block

from RAM (i.e., the miss penalty) would take 17 cycles.

1 + 15 + 1 = 17 clock cycles

 The cache controller has to send the desired address to

the RAM, wait and receive the data.

Main

Memory

Cache

CPU

3

Miss penalties for larger cache blocks

 If the cache has four-word blocks, then loading a single block would need

four individual main memory accesses, and a miss penalty of 68 cycles!

4 x (1 + 15 + 1) = 68 clock cycles

Main

Memory

CPU

Cache

4

A wider memory

 A simple way to decrease the miss

penalty is to widen the memory and

its interface to the cache, so we

can read multiple words from RAM

in one shot.

 If we could read four words from

the memory at once, a four-word

cache load would need just 17

cycles.

1 + 15 + 1 = 17 cycles

 The disadvantage is the cost of the

wider buses—each additional bit of

memory width requires another

connection to the cache.

Main

Memory

Cache

CPU

5

An interleaved memory

 Another approach is to interleave

the memory, or split it into “banks”

that can be accessed individually.

 The main benefit is overlapping the

latencies of accessing each word.

 For example, if our main memory

has four banks, each one byte wide,

then we could load four bytes into

a cache block in just 20 cycles.

1 + 15 + (4 x 1) = 20 cycles

 Our buses are still one byte wide

here, so four cycles are needed to

transfer data to the caches.

 This is cheaper than implementing

a four-byte bus, but not too much

slower.

Main Memory

CPU

Bank 0 Bank 1 Bank 2 Bank 3

Cache

6

 Here is a diagram to show how the memory accesses can be interleaved.

— The magenta cycles represent sending an address to a memory bank.

— Each memory bank has a 15-cycle latency, and it takes another cycle

(shown in blue) to return data from the memory.

 This is the same basic idea as pipelining!

— As soon as we request data from one memory bank, we can go ahead

and request data from another bank as well.

— Each individual load takes 17 clock cycles, but four overlapped loads

require just 20 cycles.

Interleaved memory accesses

Load word 1

Load word 2

Load word 3

Load word 4

Clock cycles

15 cycles

7

Which is better?

 Increasing block size can improve hit rate (due to spatial locality), but

transfer time increases. Which cache configuration would be better?

 Assume both caches have single cycle hit times. Memory accesses take

15 cycles, and the memory bus is 8-bytes wide:

— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Cache #1 Cache #2

Block size 32-bytes 64-bytes

Miss rate 5% 4%

8

Which is better?

 Increasing block size can improve hit rate (due to spatial locality), but

transfer time increases. Which cache configuration would be better?

 Assume both caches have single cycle hit times. Memory accesses take

15 cycles, and the memory bus is 8-bytes wide:

— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Cache #1 Cache #2

Block size 32-bytes 64-bytes

Miss rate 5% 4%

Cache #1:

Miss Penalty = 1 + 15 + 32B/8B = 20 cycles

AMAT = 1 + (.05 * 20) = 2
Cache #2:

Miss Penalty = 1 + 15 + 64B/8B = 24 cycles

AMAT = 1 + (.04 * 24) = ~1.96

9

Summary

 Writing to a cache poses a couple of interesting issues.

— Write-through and write-back policies keep the cache consistent with
main memory in different ways for write hits.

— Write-around and allocate-on-write are two strategies to handle write
misses, differing in whether updated data is loaded into the cache.

 Memory system performance depends upon the cache hit time, miss rate
and miss penalty, as well as the actual program being executed.

— We can use these numbers to find the average memory access time.

— We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate x Miss penalty)

Memory stall cycles = Memory accesses x miss rate x miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

 The organization of a memory system affects its performance.

— The cache size, block size, and associativity affect the miss rate.

— We can organize the main memory to help reduce miss penalties. For
example, interleaved memory supports pipelined data accesses.

10

A Real Problem

 What if you wanted to run a program that needs more memory than you

have?

11

Virtual Memory (and Indirection)

 Virtual Memory

— We’ll talk about the motivations for virtual memory

— We’ll talk about how it is implemented

— Lastly, we’ll talk about how to make virtual memory fast: Translation

Lookaside Buffers (TLBs).

13

More Real Problems

 Running multiple programs at the same time brings up more problems.

1. Even if each program fits in memory, running 10 programs might not.

2. Multiple programs may want to store something at the same address.

3. How do we protect one program’s data from being read or written by

another program?

15

Virtual Memory

 We translate “virtual addresses” used by the program to “physical

addresses” that represent places in the machine’s “physical” memory.

— The word “translate” denotes a level of indirection
V
ir

tu
a
l
A
d
d
re

ss

Physical

Memory

Disk

A virtual address can be

mapped to either physical

memory or disk.

16

Virtual Memory

 Because different processes will have different mappings from virtual to

physical addresses, two programs can freely use the same virtual

address.

 By allocating distinct regions of physical memory to A and B, they are

prevented from reading/writing each others data.

V
ir

tu
a
l
A
d
d
re

ss

Physical

Memory

Disk

V
irtu

a
l A

d
d
re

ss
Program A Program B

17

Caching revisited

 Once the translation infrastructure is in place, the problem boils down to

caching.

— We want the size of disk, but the performance of memory.

 The design of virtual memory systems is really motivated by the high cost

of accessing disk.

— While memory latency is ~100 times that of cache, disk latency is

~100,000 times that of memory.

 Hence, we try to minimize the miss rate:

— VM “pages” are much larger than cache blocks. Why?

— A fully associative policy is used.

• With approximate LRU

 Should a write-through or write-back policy be used?

18

Finding the right page

 If it is fully associative, how to we find the right page without scanning

all of memory?

19

Finding the right page

 If it is fully associative, how do we find the right page without scanning

all of memory?

— Use an index, just like you would for a book.

 Our index happens to be called the page table:

— Each process has a separate page table

• A “page table register” points to the current process’s page table

— The page table is indexed with the virtual page number (VPN)

• The VPN is all of the bits that aren’t part of the page offset.

— Each entry contains a valid bit, and a physical page number (PPN)

• The PPN is concatenated with the page offset to get the physical

address

— No tag is needed because the index is the full VPN.

20

Page Table picture

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

21

How big is the page table?

 From the previous slide:

— Virtual page number is 20 bits.

— Physical page number is 18 bits + valid bit -> round up to 32 bits.

 How about for a 64b architecture?

22

Dealing with large page tables

 Multi-level page tables

— “Any problem in CS can be solved by adding a level of indirection”

or two…

 Since most processes don’t use the whole address space, you don’t
allocate the tables that aren’t needed

— Also, the 2nd and 3rd level page tables can be “paged” to disk.

VPN1 VPN2 VPN3 offset

Page Table

Base Pointer

PPN

PPN offset

1st

2nd

3rd

A 3-level page table

23

24

Waitaminute!

 We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]

— i.e., 4 memory accesses

 And we haven’t talked about the bad case yet (i.e., page faults)…

“Any problem in CS can be solved by adding a level of indirection”

— except too many levels of indirection…

 How do we deal with too many levels of indirection?

25

Caching Translations

 Virtual to Physical translations are cached in a Translation Lookaside

Buffer (TLB).

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte

offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

26

What about a TLB miss?

 If we miss in the TLB, we need to “walk the page table”

— In MIPS, an exception is raised and software fills the TLB

— In x86, a “hardware page table walker” fills the TLB

 What if the page is not in memory?

— This situation is called a page fault.

— The operating system will have to request the page from disk.

— It will need to select a page to replace.

• The O/S tries to approximate LRU (see CS423)

— The replaced page will need to be written back if dirty.

27

Memory Protection

 In order to prevent one process from reading/writing another process’s

memory, we must ensure that a process cannot change its virtual-to-

physical translations.

 Typically, this is done by:

— Having two processor modes: user & kernel.

• Only the O/S runs in kernel mode

— Only allowing kernel mode to write to the virtual memory state, e.g.,

• The page table

• The page table base pointer

• The TLB

28

Sharing Memory

 Paged virtual memory enables sharing at the granularity of a page, by

allowing two page tables to point to the same physical addresses.

 For example, if you run two copies of a program, the O/S will share the

code pages between the programs.

V
ir

tu
a
l
A
d
d
re

ss

Physical

Memory

Disk

V
irtu

a
l A

d
d
re

ss
Program A Program B

29

Summary

 Virtual memory is great:

— It means that we don’t have to manage our own memory.

— It allows different programs to use the same memory.

— It provides protect between different processes.

— It allows controlled sharing between processes (albeit somewhat

inflexibly).

 The key technique is indirection:

— Yet another classic CS trick you’ve seen in this class.

— Many problems can be solved with indirection.

 Caching made a few appearances, too:

— Virtual memory enables using physical memory as a cache for disk.

— We used caching (in the form of the Translation Lookaside Buffer) to

make Virtual Memory’s indirection fast.

