
1

Lecture 18

 Review:

— Write-through?

— Write-back?

 Block allocation policy on a write miss

 Cache performance

2

Write-through caches

 A write-through cache forces all writes to update both the cache and the

main memory.

 This is simple to implement and keeps the cache and memory consistent.

 The bad thing is that forcing every write to go to main memory, we use

up bandwidth between the cache and the memory.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763

3

Write-back caches

 In a write-back cache, the memory is not updated until the cache block

needs to be replaced (e.g., when loading data into a full cache set).

 For example, we might write some data to the cache at first, leaving it

inconsistent with the main memory as shown before.

— The cache block is marked “dirty” to indicate this inconsistency

 Subsequent reads to the same memory address?

 Multiple writes to same block?

Index Tag DataDirty Address

...

110

...

1 11010 21763

Data

42803

1000 1110

1101 0110

...

Mem[214] = 21763

1225

V

1

4

Write-back cache discussion

 The advantage of write-back caches is that not all write operations need

to access main memory, as with write-through caches.

— If a single address is frequently written to, then it doesn’t pay to keep

writing that data through to main memory.

— If several bytes within the same cache block are modified, they will

only force one memory write operation at write-back time.

5

Write misses

 A second scenario is if we try to write to an address that is not already

contained in the cache; this is called a write miss.

 Let’s say we want to store 21763 into Mem[1101 0110] but we find that

address is not currently in the cache.

 When we update Mem[1101 0110], should we also load it into the cache?

Index Tag DataV Address

...

110

...

1 00010 123456

Data

6378

...

1101 0110

...

6

 With a write around policy, the write operation goes directly to main

memory without affecting the cache.

Write around caches (a.k.a. write-no-allocate)

Index Tag DataV

...

110

...

1 00010 123456

Address Data

21763

...

1101 0110

...

Mem[214] = 21763

7

 With a write around policy, the write operation goes directly to main

memory without affecting the cache.

 This is good when data is written but not immediately used again, in

which case there’s no point to load it into the cache yet.

for (int i = 0; i < SIZE; i++)
a[i] = i;

Write around caches (a.k.a. write-no-allocate)

Index Tag DataV

...

110

...

1 00010 123456

Address Data

21763

...

1101 0110

...

Mem[214] = 21763

8

Allocate on write

 An allocate on write strategy would instead load the newly written data

into the cache.

 If that data is needed again soon, it will be available in the cache.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763

9

Which is it?

 Given the following trace of accesses, can you determine whether the

cache is write-allocate or write-no-allocate?

— Assume A and B are distinct, and can be in the cache simultaneously.

Load A

Store B

Store A

Load A

Load B

Load B

Load A

Miss

Miss

Miss

Hit

Hit

Hit

Hit

10

Which is it?

 Given the following trace of accesses, can you determine whether the

cache is write-allocate or write-no-allocate?

— Assume A and B are distinct, and can be in the cache simultaneously.

Load A

Store B

Store A

Load A

Load B

Load B

Load A

Miss

Miss

Miss

Hit

Hit

Hit

Hit

On a write-

allocate cache this

would be a hit
Answer: Write-no-allocate

11

First Observations

 Split Instruction/Data caches:

— Pro: No structural hazard between IF & MEM stages

• A single-ported unified cache stalls fetch during load or store

— Con: Static partitioning of cache between instructions & data

• Bad if working sets unequal: e.g., code/DATA or CODE/data

 Cache Hierarchies:

— Trade-off between access time & hit rate

• L1 cache can focus on fast access time (okay hit rate)

• L2 cache can focus on good hit rate (okay access time)

— Such hierarchical design is another “big idea”

— We’ll see this in section.

L1 cacheCPU Main

Memory
L2 cache

12

Opteron Vital Statistics

 L1 Caches: Instruction & Data

— 64 kB

— 64 byte blocks

— 2-way set associative

— 2 cycle access time

 L2 Cache:

— 1 MB

— 64 byte blocks

— 4-way set associative

— 16 cycle access time (total, not just miss penalty)

 Memory

— 200+ cycle access time

L1 cacheCPU Main

Memory
L2 cache

13

Comparing cache organizations

 Like many architectural features, caches are evaluated experimentally.

— As always, performance depends on the actual instruction mix, since

different programs will have different memory access patterns.

— Simulating or executing real applications is the most accurate way to

measure performance characteristics.

 The graphs on the next few slides illustrate the simulated miss rates for

several different cache designs.

— Again lower miss rates are generally better, but remember that the

miss rate is just one component of average memory access time and

execution time.

— You’ll probably do some cache simulations if you take CS433.

14

Associativity tradeoffs and miss rates

 As we saw last time, higher associativity means more complex hardware.

 But a highly-associative cache will also exhibit a lower miss rate.

— Each set has more blocks, so there’s less chance of a conflict between

two addresses which both belong in the same set.

— Overall, this will reduce AMAT and memory stall cycles.

 The textbook shows the miss rates decreasing as the associativity

increases.

0%

3%

6%

9%

12%

Eight-wayFour-wayTwo-wayOne-way

M
is

s
ra

te

Associativity

15

Cache size and miss rates

 The cache size also has a significant impact on performance.

— The larger a cache is, the less chance there will be of a conflict.

— Again this means the miss rate decreases, so the AMAT and number of

memory stall cycles also decrease.

 The complete Figure 7.29 depicts the miss rate as a function of both the

cache size and its associativity.

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB

2 KB

4 KB

8 KB

M
is

s
 r
a

te

Associativity

16

Block size and miss rates

 Finally, Figure 7.12 on p. 559 shows miss rates relative to the block size

and overall cache size.

— Smaller blocks do not take maximum advantage of spatial locality.

1 KB

8 KB

16 KB

64 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

18

Memory and overall performance

 How do cache hits and misses affect overall system performance?

— Assuming a hit time of one CPU clock cycle, program execution will

continue normally on a cache hit. (Our earlier computations always

assumed one clock cycle for an instruction fetch or data access.)

— For cache misses, we’ll assume the CPU must stall to wait for a load

from main memory.

 The total number of stall cycles depends on the number of cache misses

and the miss penalty.

Memory stall cycles = Memory accesses x miss rate x miss penalty

 To include stalls due to cache misses in CPU performance equations, we

have to add them to the “base” number of execution cycles.

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

19

Performance example

 Assume that 33% of the instructions in a program are data accesses. The

cache hit ratio is 97% and the hit time is one cycle, but the miss penalty

is 20 cycles.

Memory stall cycles = Memory accesses x Miss rate x Miss penalty
= 0.33 I x 0.03 x 20 cycles

= 0.2 I cycles

 If I instructions are executed, then the number of wasted cycles will be

0.2 x I.

This code is 1.2 times slower than a program with a “perfect” CPI of 1!

20

Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

 Processor performance traditionally outpaces memory performance, so

the memory system is often the system bottleneck.

 For example, with a base CPI of 1, the CPU time from the last page is:

CPU time = (I + 0.2 I) x Cycle time

 What if we could double the CPU performance so the CPI becomes 0.5,

but memory performance remained the same?

CPU time = (0.5 I + 0.2 I) x Cycle time

 The overall CPU time improves by just 1.2/0.7 = 1.7 times!

 Refer back to Amdahl’s Law from textbook page 101.

— Speeding up only part of a system has diminishing returns.

21

Basic main memory design

 There are some ways the main memory can be organized to reduce miss

penalties and help with caching.

 For some concrete examples, let’s assume the following

three steps are taken when a cache needs to load data

from the main memory.

1. It takes 1 cycle to send an address to the RAM.

2. There is a 15-cycle latency for each RAM access.

3. It takes 1 cycle to return data from the RAM.

 In the setup shown here, the buses from the CPU to the

cache and from the cache to RAM are all one word wide.

 If the cache has one-word blocks, then filling a block

from RAM (i.e., the miss penalty) would take 17 cycles.

1 + 15 + 1 = 17 clock cycles

 The cache controller has to send the desired address to

the RAM, wait and receive the data.

Main

Memory

Cache

CPU

22

Miss penalties for larger cache blocks

 If the cache has four-word blocks, then loading a single block would need

four individual main memory accesses, and a miss penalty of 68 cycles!

4 x (1 + 15 + 1) = 68 clock cycles

Main

Memory

CPU

Cache

23

A wider memory

 A simple way to decrease the miss

penalty is to widen the memory and

its interface to the cache, so we

can read multiple words from RAM

in one shot.

 If we could read four words from

the memory at once, a four-word

cache load would need just 17

cycles.

1 + 15 + 1 = 17 cycles

 The disadvantage is the cost of the

wider buses—each additional bit of

memory width requires another

connection to the cache.

Main

Memory

Cache

CPU

24

An interleaved memory

 Another approach is to interleave

the memory, or split it into “banks”

that can be accessed individually.

 The main benefit is overlapping the

latencies of accessing each word.

 For example, if our main memory

has four banks, each one byte wide,

then we could load four bytes into

a cache block in just 20 cycles.

1 + 15 + (4 x 1) = 20 cycles

 Our buses are still one byte wide

here, so four cycles are needed to

transfer data to the caches.

 This is cheaper than implementing

a four-byte bus, but not too much

slower.

Main Memory

CPU

Bank 0 Bank 1 Bank 2 Bank 3

Cache

25

 Here is a diagram to show how the memory accesses can be interleaved.

— The magenta cycles represent sending an address to a memory bank.

— Each memory bank has a 15-cycle latency, and it takes another cycle

(shown in blue) to return data from the memory.

 This is the same basic idea as pipelining!

— As soon as we request data from one memory bank, we can go ahead

and request data from another bank as well.

— Each individual load takes 17 clock cycles, but four overlapped loads

require just 20 cycles.

Interleaved memory accesses

Load word 1

Load word 2

Load word 3

Load word 4

Clock cycles

15 cycles

26

Which is better?

 Increasing block size can improve hit rate (due to spatial locality), but

transfer time increases. Which cache configuration would be better?

 Assume both caches have single cycle hit times. Memory accesses take

15 cycles, and the memory bus is 8-bytes wide:

— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Cache #1 Cache #2

Block size 32-bytes 64-bytes

Miss rate 5% 4%

27

Which is better?

 Increasing block size can improve hit rate (due to spatial locality), but

transfer time increases. Which cache configuration would be better?

 Assume both caches have single cycle hit times. Memory accesses take

15 cycles, and the memory bus is 8-bytes wide:

— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Cache #1 Cache #2

Block size 32-bytes 64-bytes

Miss rate 5% 4%

Cache #1:

Miss Penalty = 1 + 15 + 32B/8B = 20 cycles

AMAT = 1 + (.05 * 20) = 2
Cache #2:

Miss Penalty = 1 + 15 + 64B/8B = 24 cycles

AMAT = 1 + (.04 * 24) = ~1.96

28

Summary

 Writing to a cache poses a couple of interesting issues.

— Write-through and write-back policies keep the cache consistent with
main memory in different ways for write hits.

— Write-around and allocate-on-write are two strategies to handle write
misses, differing in whether updated data is loaded into the cache.

 Memory system performance depends upon the cache hit time, miss rate
and miss penalty, as well as the actual program being executed.

— We can use these numbers to find the average memory access time.

— We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate x Miss penalty)

Memory stall cycles = Memory accesses x miss rate x miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

 The organization of a memory system affects its performance.

— The cache size, block size, and associativity affect the miss rate.

— We can organize the main memory to help reduce miss penalties. For
example, interleaved memory supports pipelined data accesses.

29

Writing Cache Friendly Code

•Two major rules:

•Repeated references to data are good (temporal locality)

•Stride-1 reference patterns are good (spatial locality)

•Example: cold cache, 4-byte words, 4-word cache blocks

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Miss rate = Miss rate = 1/4 = 25% 100%

Adapted from Randy Bryant

