Lecture 14

= Midterm in a week, don’t forget abou ice questions
* Midterm subject: up to (including) pipelining
= Today:

— Finish up performance

-

— Start looking into memory hierarchy - Cache$! Yay!
——

- Hs}- , 'h.n thek fJUJZ

Execution time, again

—2 CPUtime,, = Instructions executed, \CPI,)" Clock cycle time,

—m Y —_——

» The easiest way to remember this is match up the units: 7'

S N o

s, < .

L) 'Seo‘

prosem P 3 >

= Make things faster by making any component smaller!!

= Qften easy to reduce one component by increasing another

Improving CPI

= Many processor design techniques we’ll see improve CPI
— Often they only improve CPI for certain types of instructions

CPI =

— !'

CPII ® F; where
.<I ‘\

I [/J =

——

Instruction Count
= Fi = Fraction of instructions of type i

= First Law of Performance:

Make the common case fast
r e———

= Base Machine:

URRERVEE }

= How much faster would the machine bW

Example: CPl improvements

v

;/We added a branch predictor to reduce branch time by 1 cycle?
& we could do two ALU operations in parallel?

Op Type Freq (fi) Cycles CPli
ALU 50% ¥ LS (Y
Load 20% » 3 (
Store 10% 3 0.%
Branch 20% 2 0.4
3.2

2.¥

0.2

25

= we added a cache to reduce average load time to 3 cycles?

0.971

.Uy

Amdahl’s Law

Amdahl’s Law states that optimizations are limited in their effectiveness.

—

Execution . .
Time affected by improvement ;
time after = _ yimp . Tm'!e unaffecte
improvement Amount of improvement by improvement
A

For example, doubling the speed of floating-point operations sounds like

a great idea. But if only EQB‘-)of the program execution time T involves
floating-point code, then the overall performance improves by]u

Execution
time after = m + 0.90T = 095T
improvement 2

What is the maximum speedup from improving floating point? ‘OOL

= Second Law of Performance:

Make the fast case common

¢4

(2

Summary - Performance

Performance is one of the most important criteria in judging systems.
There are two main measurements of performance.

— Execution time is what we’ll focus on.

— Throughput is important for servers and operating systems.

Our main performance equation explains how performance depends on
several factors related to both hardware and software.

CPU time, ;, = Instructions executed, * CPI, , * Clock cycle time,

It can be hard to measure these factors in real life, but this is a useful
guide for comparing systems and designs.

Amdahl’s Law tell us how much improvement we can expect from specific
enhancements.

The best benchmarks are real programs, which are more likely to reflect
common instruction mixes.

How will execution time grow with SIZE?

int array[SIZE];
int A = 0;

for (int 1 = 0 ; i < 200000 ; ++ i) {
for (int jq= o ; j_f SIZE ; ++ Jj) {

\§>+= array[]] -

TIME

Plot

— SIZE

7

— Actual Data

0 2000 4000 6000 2000 10000

Memory Systems and 1/0

We've already seen how to make a fast processor. How can we supply the
CPU with enough data to keep it busy?

Part of C5378 focuses on memory and input/output issues, which are
frequently bottlenecks that limit the performance of a system.

We’ll start off by looking at memory systems and turn to 1/0.
— How caches can dramatically improve the speed of memory accesses.

— How virtual memory provides security and ease of programming
e e
— How processors, memory and peripheral devices can be connected

Processor Memory

< <

Input /Qutput _& 5]

Cache introduction

= We’'ll answer the following questions.
— What are the challenges of building big, fast memory systems? ~
— What is a cache?
— Why caches work?((answer: locality)
— How are caches orgam
* Where do we put things -and- how do we find them?

e ey
{Ey<gh Scan Align

== Micro-coda

]
|
®
v
8
X
S
P
9
B
]
z
o«
(=]
[+
I
|
|
|
|
|
|
|

10

Large and fast

= Today’'s computers depend upon large and fast storage systems.

— Large storage capacities are needed for many database applications,
scientific computations with large data sets, video and music, and so
forth.

— Speed is important to keep up with our pipelined CPUs, which may
access both an instruction and data in the same clock cycle. Things
get become even worse if we move to a superscalar CPU design.

= So far we've assumed our memories can keep up and our CPU can access
memory twice in one cycle, but as we’'ll see that’s a simplification.

"

Small or slow

fal

Unfortunately there is a tradeoff between speed, cost and capacity.

—_—2
—_—

-

Storage Speed Cost Capacity
Static RAM ‘.Fastg_sjf) @pensi\@) Smallest
Dynamic RAM @ Cheap
Hard disks Slowest |Cheapest |Largest

Fast memory is too expensive for most people to buy a lot of.

But dynamic memory has a much longer delay than other functional units
in a datapath. If every lw or sw accessed dynamic memory, we’d have to
either increase the cycle time or stall frequently.

Here are rough estimates of some current storage parameters.

Storage Delay Cost/MB Capacity
Static RAM | 1-10 cycles s5) 128KB-2MB <7 CAME
Dynamic RAM | 100-200 cycles ~50.10 128MB-4GB
Hard disks 10,000,000 cycles ~50.0005 20GB-400GB

12

Introducing caches

Wouldn’t it be nice if we could find a balance between
fast and cheap memory?

We do this by introducing a cache, which is a small
amount of fast, expensive memory.

— The cache goes between the processor and thep_‘ﬂ,
slower, dynamic main memory. 5

— It keeps a copy of the most frequently used data
from the main memory.

Memory access speed increases overall, because we've
made the common case faster.

— Reads and writes to the most frequently used
addresses will be serviced by the cache.

— We only need to access the slower main memor
for less frequently used data.

& 6o
Flssas

CPU

€ static
(cache)

i

Lots of
dynamic RAM

4

13

The principle of locality

It's usually difficult or impossible to figure out what data will be “most
frequently accessed” before a program actually runs, which makes it hard
to know what to store into the small, precious cache memory.

But in practice, most programs exhibit locality, which the cache can take
advantage of.

— The principle of temporal locality says that if a program accesses one
memory address, there is a good chance that it will access the same
address again.

— The principle of spatial locality says that if a program accesses one
memory address, there is a good chance that it will also access other
nearby addresses.

14

Temporal locality iéérograms 2

= The principle of temporal locality says that if a program accesses one
memory address, there is a good chance that it will access the same
address again.

Loop: Tw $t0, 0(3s1)
add $to, 3t0, 3$s2
Sw $t0, 0(3%sl)
addi 3%s1, $s1, -4
bne $sl1, 30, Loop

15

Temporal locality in programs

The principle of temporal locality says that if a program accesses one
memory address, there is a good chance that it will access the same
address again.

Loops are excellent examples of temporal locality in programs.
— The loop body will be executed many times.

— The computer will need to access those same few locations of the
instruction memory repeatedly.

For example:

Loop: Tw $t0, 0(3s1)
add $to, 3t0, 3$s2
Sw $t0, 0(3%sl)
addi 3%s1, $s1, -4
bne $sl1, 30, Loop

— Each instruction will be fetched over and over again, once on every
loop iteration.

Temporal locality in data

= Programs often access the same variables over and over, especially within
loops.

sum = 0; v

Q0 v .
for (i¥= 0; 1 < MAX; i++)
uy = Eum]+ f(i);

17

Temporal locality in data

Programs often access the same variables over and over, especially within
loops.

sum = 0;
for (i = 0; 1 < MAX; 1++)
sum = sum + f(1);

Commonly-accessed variables can sometimes be kept in registers, but this
is not always possible.

— There are a limited number of registers.

— There are situations where the data must be kept in memory, as is the
case with shared or dynamically-allocated memory.

18

Spatial locality i

= The principle of spatial locality says that if a program accesses one
memory address, there is a good chance that it will also access other

nearby addresses.

@ Y sub

— u / sw
-7 ? 7 sw
o ‘ sw

2 _ SW

$sp,
Sra,
$s0,
$a0,
$al,

$sp, 16 r ==}
0(%sp)

4(3sp)

8($sp)

12 ($spd

Nearly every program exhibits spatial locality, because instructions
usually executed in sequence—if we execute an instruction at memory
location 7, then we will probably also execute the next instruction, at

memory location i+7.

Code fragments such as loops exhibit both temporal and spatial locality.

19

Spatial locality in data

WA
aleo) —_— sum = 0;
et for (i = 0; i1 < MAX; 14H)
aelz] sum = sum + a[i];
—
MEM -

AT] Nogs .
emp'loyee. = “Homer Simpson’;
employee.l§os3 = “Mr. Burns”;
employee .agéy= 45;

e g__

= Where is data locality?

= Can data have both spatial and
temporal locality?

20

Spatial locality in data

Programs often access data
that is stored contiguously.

— Arrays, like a in the code
on the top, are stored in
memory contiguously.

— The individual fields of a
record or object like
employee are also kept
contiguously in memory.

Can data have both spatial and
temporal locality?

sum = 0;
for (i = 0; 1 < MAX; i++)
sum = sum + a[i];

omer Simpson”;
r. Burnhs”;

employee.name
employee.boss
employee.age = 45;

HH
IIM

21

How caches take advantage of temporal locality

= The first time the processor reads from an address in
main memory, a copy of that data is also stored in the
cache. — +4
— The next time that same address is read, we can @r &
use the copy of the data in the cache instead of o
accessing the slower dynamic memory. A LG static
— So the first read is a little slower than before since RAY (cache)
it goes through both main memory and the cache,
but subsequent reads are much faster.

CPU

~ @

= This takes advantage of temporal locality—commonly
accessed data is stored in the faster cache memory. Lots of

dynamic RAM

42

How caches take advantage of spatial locality

= When the CPU reads location 7 from main memory, a
copy of that data is placed in the cache.

= But instead of just copying the contents of location i,

we can copy several es into the cache atonce,
such as the four bytes from lc:-caticmsi through 7 + 3.

CPU

— If the CPU later does need to read from locations
i+1,i+ 2o0ri+ 3, itcan access that data from
the cache and not the slower main memory.

— For example, instead of reading just one array
element at a time, the cache might actually be
loading four array elements at once.

= Again, the initial load incurs a performance penalty,

but we’re gambling on spatial locality and the chance
that the CPU will need the extra data.

A little static
RAM (cache)

Lots of
dynamic RAM

23

Other kinds of caches

= The idea of caching is not specific to architecture.
— caches are used in many other situations.

24

Other kinds of caches

= The general idea behind caches is used in many other situations.
= Networks are probably the best example.

— Networks have relatively high “latency” and low “bandwidth,” so
repeated data transfers are undesirable.

— Browsers like Netscape and Internet Explorer store your most recently
accessed web pages on your hard disk.

— Administrators can set up a network-wide cache, and companies like
Akamai also provide caching services.

= A few other examples:

— Many processors have a “translation lookaside buffer,” which is a
cache dedicated to virtual memory support.

— Operating systems may store frequently-accessed disk blocks, like
directories, in main memory... and that data may then in turn be
stored in the CPU cache!

23

Definitions: Hits and misses

A cache hit occurs if the cache contains the data that we’re looking for.
Hits are good, because the cache can return the data much faster than
main memaory.

A cache miss occurs if the cache does not contain the requested data.
This 15 bad, since the CPU must then wait for the slower main memory.

There are two basic measurements of cache performance. # b

— The hit rate is the percentage of memory accesses that are handl?‘d (
by the cache. etonn
— The miss rate (1 - hitrate) is the peyentage of accesses that must be

handtedtythe slower main RA

Typical caches have a hit rate r higher, so in fact most memory
accesses will be handled by the\cacl®e and will be dramatically faster.

In future lectures, we’'ll talk more about cache performance.

26

A simple cache design

= (Caches are divided into blocks, which may be of various sizes.
— The number of blocks in a cache is usually a power of 2.

— For now we’ll say that each block contains one byte. This won’t take
advantage of spatial locality, but we’ll do that next time.

» Here is an example cache with eight blocks, each holding one byte.

- deC € ssrie
Block
index 8-bit data
000 (%
001 A
010
011
100 Q v
101
110 “
111

7

Four important questions

;] J 1. When we copy a block of data from main memory to

.- the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if
it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To
load a new block from main RAM, we'd have to replace
one of the existing blocks in the cache... which one?

3 can write operations be handled by the memory
——
system?

= Questions 1 and 2 are related—we have to know where the data is placed
if we ever hope to find it again later!

28

Where should we put data in the cache?

= A direct-mapped cache is the simplest approach: each main memory
address maps to exactly one cache block.

= For example, on the right Memony
is a 16-byte main memory Address
and a 4-byte cache (four

0

1-byte blocks). 1

= Memory locations 0, 4, 8 Z
and 12 all map to cache 3
block 0. :

= Addresses 1, 5,9 and 13 6
map to cache block 1, etc. 7

= How can we compute this 2
mapping? 1n

11

12

13

14

29

It’s all divisions...

= One way to figure out which cache block a particular memory address
should go to is to use the mod (remainder) operator.

» |f the cache contains 2 Memory
blocks, then the data at Address
memory address i would

0

go to cache block index 1
2z
i mod 2* 3
il

» For instance, with the 5 Index
four-block cache here, 6
address 14 would map 7
to cache block 2. 2
14mod 4 =2 .
12
Easy way? 13
14
15

30

...or least-significant bits

= An equivalent way to find the placement of a memory address in the
cache is to look at the least significant k bits of the address.

= With our four-byte cache

we would inspect the two ﬁjﬂzg
least significant bits of 0000
our memory addresses. 0001
= Again, you can see that 0010
address 14 (1110 in binary) 0ot
maps to cache block 2 818? Index
(10 in binary). 0110
= Taking the least k bits of 0111
a binary value is the same 1000
as computing that value 100t
mod 2-. 1o1o

1011
1100
1101
1110
111

31

How can we find data in the cache?

= The second question was how to determine whether or not the data
we're interested in is already stored in the cache.

» If we want to read memory permory
address i, we can use the Address
mod trick to determine
which cache block would
contain 7.

» But other addresses might
also map to the same cache
block. How can we
distinguish between them?

Index

» For instance, cache block
2 could contain data from
addresses 2, 6, 10 or 14.

R oS ol o o = O

32

Adding tags

= We need to add tags to the cache, which supply the rest of the address
bits to let us distinguish between different memory locations that map to
the same cache block.

0000
0001
o0
0011

0100
0101 Indesx Tag Data

0110 oo 00
0111 01 I
1000 10 01
1001 b 01
1010
1011
1100
1101
1110
1111

33

Adding tags

= We need to add tags to the cache, which supply the rest of the address
bits to let us distinguish between different memory locations that map to
the same cache block.

0000
0001
o0
0011

0100
0101 Indesx Tag Data

0110 oo 00
0111 o1 11
1000 10 01
1001 b 01
1010
1011
1100
1101
1110
1111

34

Figuring out what’s in the cache

= Now we can tell exactly which addresses of main memory are stored in
the cache, by concatenating the cache block tags with the block indices.

Main memaory
address in cache block

Index Tag Data
0o 00 00+ 00 = 0000
01 11 11+ 01 = 1101
10 01 01 + 10 =010
11 01 01 + 11 =0111

33

One more detail: the valid bit

= When started, the cache is empty and does not contain valid data.
We should account for this by adding a valid bit for each cache block.
— When the system is initialized, all the valid bits are set to 0.
— When data is loaded into a particular cache block, the corresponding

valid bit is set to 1.

kain memory

Walid
Index Bit Tag Data address in cache block
a0 1 00 — (0 + 00 = 0000
o 0 11 — Inwalid
10 0 01 — i
11 1 01 —_— L

So the cache contains more than just copies of the data in memory; it
also has bits to help us find data within the cache and verify its validity.

36

One more detail: the valid bit

= When started, the cache is empty and does not contain valid data.
We should account for this by adding a valid bit for each cache block.
— When the system is initialized, all the valid bits are set to 0.
— When data is loaded into a particular cache block, the corresponding

valid bit is set to 1.

kain memory

Walid
Index Bit Tag Data address in cache block
a0 1 00 — (0 + 00 = 0000
o 0 11 — Inwalid
10 0 07 —_— Inwalid
11 i 01 —_— M+ 11=01M

So the cache contains more than just copies of the data in memory; it
also has bits to help us find data within the cache and verify its validity.

37

What happens on a cache hit

= When the CPU tries to read from memory, the address will be sent to a
cache controller.

— The lowest k bits of the address will index a block in the cache.

— If the block is valid and the tag matches the upper (m - k) bits of the
m-bit address, then that data will be sent to the CPU.

» Here is a diagram of a 32-bit memory address and a 2'°-byte cache.

Address (32 bits) Index “Walid Tag Data
0]
| — :
22 [0 2
Index 3 To CPU
1022
1023
Tag

34

What happens on a cache miss

= The delays that we’ve been assuming for memories (e.g., 2ns) are really
assuming cache hits.
— If our CPU implementations accessed main memory directly, their
cycle times would have to be much larger.

— Instead we assume that most memory accesses will be cache hits,
which allows us to use a shorter cycle time.

= However, a much slower main memory access is needed on a cache miss.

The simplest thing to do is to stall the pipeline until the data from main
memory can be fetched (and also copied into the cache).

39

Loading a block into the cache

= After data is read from main memory, putting a copy of that data into the
cache is straightforward.

— The lowest k bits of the address specify a cache block.

— The upper (m - k) address bits are stored in the block’s tag field.
— The data from main memory is stored in the block’s data field.

— The valid bit is set to 1.

Address (32 bits) Index Walid Tag Data

0
| — 1
2] 0] 2
Index 3

T i

ag |

Data

40

What if the cache fills up?

= Qur third question was what to do if we run out of space in our cache, or
if we need to reuse a block for a different memory address.

= We answered this question implicitly on the last page!

— A miss causes a new block to be loaded into the cache, automatically
overwriting any previously stored data.

— This is a least recently used replacement policy, which assumes that
older data is less likely to be requested than newer data.

= We'll see afew other policies next.

41

Summary

Basic ideas of caches.

— By taking advantage of spatial and temporal locality, we can use a
small amount of fast but expensive memory to dramatically speed up
the average memory access time.

— A cache is divided into many blocks, each of which contains a valid
bit, a tag for matching memory addresses to cache contents, and the
data itself.

Next we’ll lock at some more advanced cache organizations and see how
to measure the performance of memory systems.

47

