Lecture 13

= Today’s lecture:
— What about branches?
— Crystal ball
— Look at performance again
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~>Stall = Nop conversion
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= The effect of a load stall is to insert an empty or nop instruction into the
pipeline




Adding hazard detection to the CPU
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The hazard detection unit

= The hazard detection unit’s inputs are as follows.

— |IF/ID.RegisterRs and IF/ID.RegisterRt, the source registers for the
current instruction.
— ID/EX.MemRead and ID/EX.RegisterRt, to determine if the previous
instruction is LW and, if so, which register it will write to.
= By inspecting these values, the detection unit generates three outputs.
— Two new control signals PCWrite and IF/ID Write, which determine
whether the pipeline stalls or continues.

— A mux select for a new multiplexer, which forces control signals for
the current EX and future MEM/WB stages to 0 in case of astall.



= What if data memory access wea

cycles?

Generalizing Forwarding/Stalling
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=  Which instructions in the following require stalling and/or bypassing?
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Branches in the original pipelined datapath
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Branches

= Most of the work for a branch computation is done in the EX stage.
— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set
or cleared accordingly.

= Hmm, what is the problem? What do we do to solve ?
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Branches

= Most of the work for a branch computation is done in the EX stage.
— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set
or cleared accordingly.

» Thus, the branch decision cannot be made until the end of the EX stage.

— But we need to know which instruction to fetch next, in order to keep
the pipeline running!
— This leads to what's called a M azard.
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Stalling is one solution

= Again, stalling is always one possible solution.

Clock cycle
1 2 3 4 5 6 7 8

beq $2, %3, Label H { oM | | IReg
L/.
FHIO R

» Here we just stall until cycle 4, after we do make the branch decision.




Branch prediction

= Another approach is to guess whether or not the branch is taken.
— In terms of hardware, it’s easier to assume the branch is not taken.

— This way we just increment the PC and continue execution, as for
normal instructions.

= |f we're correct, then there is no problem and the pipeline keeps going at
full speed.
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Branch misprediction

If our guess is wrong, then we would have already started executing two
instructions incorrectly. We’ll have to discard, or flush, those instructions
and begin executing the right ones from the branch target address, Label.
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Performance gains and losses

= Qverall, branch prediction is worth it.
— Mispredicting a branch means that two clock cycles are wasted.

— But if our predictions are even just occasionally correct, then
this is preferable to stalling and wasting two cycles for every
branch.

= All modern CPUs use branch prediction.
— Accurate predictions are important for optimal performance.

— Most CPUs predict branches dynamically—statistics are kept at
run-time to determine the likelihood of a branch being taken.

= The pipeline structure also has a big impact on branch prediction.
— How?

— We must also be careful that instructions do not modify
registers or memory before they get flushed.
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Implementing branches

= We can actually decide the branch a little earlier, in ID instead of EX.
— Qur sample instruction set has only a BEQ.

— We can add a small comparison circuit to the ID stage, after the
source registers are read.

= Then we would only need to flush eninstruction on a misprediction.
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Implementing flushes

We must flush one instruction (in its IF stage) if the previous instruction is
BEQ and its two source registers are equal.

We can flush an instruction from the IF stage by replacing it in the IF/ID
pipeline register with a harmless nop instruction.

— MIPS uses sll 50, 50, 0 as the nop instruction.
— This happens to have a binary encoding of all 0s: 0000 .... 0000.

Flushing introduces a bubble into the pipeline, which represents the one-
cycle inytaking the branch.

ThaF.FluskrTontrol signal shown on the next page implements this idea,
but no details are shown in the diagram.
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Branching
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Timing

= If no prediction:

IF ID EX MEM WB

F ()

= If prediction:
— If Correct™”

IF

IF

ID EX MEM WB

ID EX MEMWB ---lost 1cycle

IF ID EX MEM WB --no cycle lost
— If Misprediction:

—
ID EX MEM WB

IFO IF1 ID EX MEM WB

—

--- 1 cycle lost

—
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Summary of Pipeline Hazards

= Three kinds of hazards conspire to make pipelining difficult.

= Structural hazards result from not having enough hardware available to
execute multiple instructions simultaneously.

— These are avoided by adding more functional units (e.g., more adders
or memories) or by redesigning the pipeline stages.

= Data hazards can occur when instructions need to access registers that
haven’t been updated yet.

— Hazards from R-type instructions can be awided with forwarding.
— Loads can resultin a “true” hazard, which must stall the pipeline.

= Control hazards arise when the CPU cannot determine which instruction
to fetch next.

— We can minimize delays by doing branch tests earlier in the pipeline.

— We can also take a chance and predict the branch direction, to make
the most of a bad situation.
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