Lecture 11

» Today’s topics:
— More pipelining...

-]‘1'5 ,(l(t.éq/ !

FOIU(. 6P \’lw d-o u‘(

“e s

Performance Revisited

(. 4

s n

v

Assuming the Zilowing functional unit latencies:
(4

Int;t Reqg
m -E Read

(

What is the cycle time of a single-cycle implementation?
— What is its throughput? |

(Zus

What is the cycle time of a ideal pipelined implementation? 5 5
— What is its steady-state throughput? {
—

5]-5

How much faster is pipelining?

Ideal speedup

Clock cycle
1 2 3 4 5 6 7 8 9
b 5t0,4(5sp) | IF ID EX | MEM | WB
sub Sv0, a0, Saf IF ID EX | MEM | WB
and 5t1, 5t2, 513 IF ID EX | MEM | WB
or 550, 951, 852 IF ID EX | MEM | WB
add Ssp, Ssp, 4 IF ID EX | MEM | WB |

= |n our pipeline, we can execute up to five instructions simultaneously.
— This implies that the maximum speedup is 5 times.
— In general, the ideal speedup equals the pipeline depth.

= Why was our speedup on the previous slide “only” 4 times?

— The pipeline stages are imbalanced: a register file and ALU operations
can be done in 2ns, but we must stretch that out to 3ns to keep the
ID, EX, and WB stages synchronized with IF and MEM.

— Balancing the stages is one of the many hard parts in designing a
pi‘ﬁ«!l'ﬁ'eﬁ processor.

The pipelining paradox

[y

sub S0, Sa0, Sai

5t0,4(5p) |_IF

and St1, 512, 5t3

or

Se0, Ss1, 552

Clock cycle
1 2 3 4 5 6 7 8 9
ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB |

add Ssp, S:p, -4

Pipelining does not improve the execution time of any single instruction.

Each instruction here actually takes {onger to execute than in a single-
cycle datapath (15ns vs. 12ns)!
Instead, pipelining increases the throughput, or the amount of work done
per unit time. Here, several instructions are executed together in each

clock cycle.
Why does this help us?

Pipeline diagram again...

Clock cycle
1 2 3 4 5 6 7 8 9
I —
[F T 1D | EX [MEM]| WB | V

(w s8,4(529)

sub $2,$4, $5 [F T D | EX [MeEm][wB | “

and $9, 510, $11 [F T D [X [Mem [wB | ¥

or $16,%17,518

tdd $13, 514, 50

[IF | ID | EX [MEM] WB | \»

L

[IF | ID | EX |MEM] WB |

» This diagram shows the execution of an ideal code fragment.
— Each instruction needs a total of five cycles for execution.
— One instruction begins on every clock cycle for the first five cycles.
— One instruction completes on each cycle from that time on.

Our examples are too simple

» Here is the example instruction sequence used to illustrate pipelining

Tw $8, 4(3%29)
sub 32, $4, 35
and %9, $10, %11
or $16, 317, %18
add $13, $14, 30

= Theinstructions in this example are independent.
— Each instruction reads and writes completely different registers.
— Our datapath handles this sequence easily, as we saw last time.
= But most sequences of instructions are not independent!

An example with dependencies

(Data hazardsin the pipeline diagram

Clock cycle
1 2 3 4 5 6 7 8 9
pan
[IF | ID | EX [MEMY{ WB)
e —

su

—> and 512,@55

—= OF $13, 56,52

P
[F [(1D J] EX [MEM] WB |

~ =
IF L ID)] EX [MEM] WB |
e

add $14, 52, 62 [IF [ID | EX [MEM | WB |

sw 615, 100(52) [IF [ID | EX [MEM | WB |

»= The SUB instruction does not write to register $2 until clock cycle 5. This
causes two data hazards in our current pipelined datapath.

— The AND reads register $2 in cycle 3. Since SUB hasn’t modified the
register yet, this will be the old value of $2, not the new one.

— Similarly, the OR instruction uses register $2 in cycle 4, again before
it’s actually updated by SUB.

Things that are okay

Clock cycle
1 2 3 4 5 6 7 8 9

AR
[IF | 1D | EX | NEM | O~

[IF [ID | EX [MEM[/WB |

or $13,5% [IF | ID | EX/ MEM | WB |

add $14,52,52 [IF_KID) [EX [MEM | WB |
¢ Wil o
sw $15, 100(52) [IF [(ip)T EX [MEM] WB |
e

= The ADD instruction is okay, because of the register file design.
— Registers are written at the beginning of a clock cycle,
— The new value will beavailable by the end of that cycle.
» The SW is no problem at all, since it reads $2 after the SUB finishes.

Dependency arrows

Clock cycle
1 2 3 4 5 t}"o&i’ 8 9
sub($2) 51,5 IF | ID | EX | MEM |
and $12,52,5 IF ID EX MJ]\ WB
or $13,5%6,52 !|/TI: | ID EX |‘;\\EM| WB |
add $14, 52,5 CMLW | IF | ID° EM |[MEM]| WB |
sw $15,100(52 | IF | IDY] EX |MEM | WB |

Arrows indicate the flow of data between instructions.
— The tails of the arrows show when register $2 is written.
— The heads of the arrows show when $2 is read.

Any arrow that points backwards in time represents a data hazard in our

basic pipelined datapath. Here, hazards exist between instructions 1 & 2
and 1 & 3.

A fancier pipeline diagram

b
Clock cycle
1 & 2 L 3 1 4 l 5 6
R_eg_ D s
—_— :_ o 7
0o o/
and 512,562,565 m || | Rec B
or $13,$6,52 i el |
add $14,52,52 m |

sw $15,100(52)

A more detailed look at the pipeline

We have to eliminate the hazards, so the AND and OR instructions in our
example will use the correct value for register $2.

When is the data_is actually produced and consumed?

What can we do?

Clock cycle
1 2 3 4 5 6 7
N\
sub 52, 51,53 [IF | ID |[_I2()|MEM| WB |
.
and $12,52,55 [IF | ID | EXYMEM | WB |
e

i,
or 613,56, 52 LIF [1D [(EX) [MEM [WB |

A more detailed look at the pipeline

= We have to eliminate the hazards, so the AND and OR instructions in our
example will use the correct value for register $2.

» Let’s look at when the data is actually produced and consumed.

— The SUB instruction produces its result in its EX stage, during cycle 3
in the diagram below.

— The AND and OR need the new value of $2 in their EX stages, during
clock cycles 4-5 here.

Clock cycle
1 2 3 4 5 6 7
sub 52, 51,53 [IF | ID | EX [MEM | WB |
and $12,52,55 [IF] ID | EX [MEM | WB |

or 613,56, 52 LIF | ID | EX [MEM]| WB |

Bypassing the register file

The actual result $1 - $3 is computed in clock cycle 3, before it’s needed
in cycles 4 and 5.

If we could somehow bypass the writeback and register read stages when
needed, then we can eliminate these data hazards.

— Today we’'ll focus on hazards involving arithmetic instructions.
— Next time, we’ll examine the lw instruction.

Essentially, we need to pass the ALU output from SUB directly to the AND
and OR instructions, without going through the register file.

Clock cycle
1 2 3 4 5 6 7

sub@$1,$3 (TF [T [EX §mem [ws]

and $12, 52, $5 [IF [ID | EX |[MEM | WB |

or $13,5%6, 52 [IF [ID | EX [MEM | WB |

Where to find the ALU result

= The ALU result generated in the EX stage is normally passed through the
pipeline registers to the MEM and WB stages, before it is finally written to
the register file.

= This is an abridged diagram of our pipelined datapath.

IFAD ID/EX E x EXME M MEMANE
— — R ﬁ
- .
, . g
— — %_7 \\\ g
— > ‘\P é
Instruction Registers oA g
memory B L ,/'/ %
p .
| 7
%
B
.
%
0

: R
9

Forwarding

= Since the pipeline registers already contain the ALU result, we could just
forward that value to subsequent instructions, to prevent data hazards.

— In clock cycle 4, the AND instruction can get the value $1 - $3 from
the EX/MEM pipeline register used by sub.

— Then in cycle 5, the OR can get that same result from the MEM/WB
pipeline register being used by SUB. -

Clock cycle

1 2 3 4 5 6 7
o BJRISAE]E
al'ld $12' 521, $5 - —REQ_ ’ IDM | L IReqy
or $13,5%6,52 M — ﬁ [B— DM I ﬁ

Outline of forwarding hardware

» A forwarding unit selects the correct ALU inputs for the EX stage.

— If there is no hazard, the ALU’s operands will come from the register
file, just like before.

— If there is a hazard, the operands will come from either the EX/MEM
or MEM/WB pipeline registers instead.

= How are we going to change ALU sources?
"_-__—_‘-—l__

sub §2,51,53 E_HRBQ
and 512,52,55 E

or $13,66,52

Simplified datapath with forwarding muxes

A

F IFiD
—

Instruction
METHNY

—

O

IDVEX EXME M MEM VB L
2z 7 7
. 0 v
d -
Registers F orwardd, ™
—] - /E?] ALU_. P ’
" [\;J n'iI-:fnt:ryr
F T dB _.ﬁ:
Rt 1 o '/61 — e (] \
Rd | L
"
ZN| % i@
L
\
_—--'--___

Detecting EX/MEM data hazards

= So how can the hardware determine if a hazard exists?
A\
- M rzrl_

sub 52, $1, $3 E_H;: :B‘ " H —E
. \ -
and $12, 52, $5 "H r’ o] I ﬁ

Detecting EX/MEM data hazards

= S0 how can the hardware determine if a hazard exists?

= An EX/MEM hazard occurs between the instruction currently in its EX
stage and the previous instruction if:

1. The previous instruction will write to the register file, and
2. The destination is one of the ALU source registers in the EX stage.
= There is an EX/MEM hazard between the two instructions below.

w s PH T SR
and $12, 52, %5 wl i I ﬁ

= Datain a pipeline register can be referenced using a class-like syntax.
For example, ID/EX.RegisterRt refers to the rt field stored in the ID/EX
pipeline. —

EX/MEM data hazard equations

= The first ALU source comes from the pipeline register when necessary.
~

if (EX/MEM.RegWrite = 1
and EX/MEM.RegisterRd = ID fEX.Reglst

then Forwarda = 2

= The second ALU source is similar.

if (EX/MEM.RegWrite =1
and EX/MEM.RegisterRd = ID /EX.Registe(Rt)
then ForwardB = 2& u’l,_,‘wnl-'?

NGB
Reg_ w I Fey
sub $2, 1, §3 MH_—

!
and $12, $2, %5 E_ ” E I ﬁ

Detecting MEM/WB data hazards

= A MEM/WB hazard may occur between an instruction in the EX stage and
the instruction from two cycles ago.

= One new problem is if a register is updated twice in a row.

» Register $1 is written by both of the previous instructions, but only the
most recept result (from the second ADD) should be forwarded.

add 51, 52, §3 I il B omt| | |-|req
add $1) $1) $4 M _Reg: -[DM_ || Reg

b 55,85, o} H | H e

./

MEM/WB hazard equations

= Here is an equation for detecting and handling MEM/WB hazards for the
first ALU source.

if (MEM/WB. RegWrite = 1)

and MEM/WB. RegisterRd = ID/EX.RegisterRs ¢
@(EX /MEM.RegisterRd * ID!EX.Reglster Rs or EX !MEM.Reg

then ForwardA = 1

= The second ALU operand is handled similarly.

if (MEM/WB.RegWrite = 1

and MEM/WB. RegisterRd = ID/EX.RegisterRt

and (EX/MEM.RegisterRd # ID/EX.RegisterRt or EX/MEM.RegWrite = 0)
then ForwardB = 1

Simplified datapath with forwarding

Instruction
METHNY

IFAD

Registers

ID/EX

Rt

0
1
2

o

T Farwardd,

EXME M

1

MEMAYE

Data

FaraardB

Rd

CVEX.
FenisterRt

F

IDVE ¥,
Registerrs

F orwardin

Unit

E <MEM RegisterRd

N
q

MWE MIWE. RegisterRd

"

The forwarding unit

The forwarding unit has several control signals as inputs.

ID/EX.RegisterRs EX/MEM.RegisterRd MEM/WB.RegisterRd
ID/EX.RegisterRt EX/MEM.RegWrite MEM/WB.RegWrite

(The two RegWrite signals are not shown in the diagram, but they come
from the control unit.)

The fowarding unit outputs are selectors for the ForwardA and ForwardB
multiplexers attached to the ALU. These outputs are generated from the
inputs using the equations on the previous pages.

Some new buses route data from pipeline registers to the new muxes.

Example

and
or $13,\W3$6, %2
add $14, %2, 32

sw $15, 100(%2)

Assume again each register initially contains its number plus 100.
— After the first instruction, $2 should contain -2 (101 - 103).

— The other instructions should all use -2 as one of their operands.

We’ll try to keep the example short.
— Assume no forwarding is needed except for register $2.
— We'll skip the first two cycles, since they're the same as before.

Clock cycle 3

IF: or $13, 6, §2 ID: and $12, 52, §5 EX: =ub 52,51, §3
— - -
-
IFAD ID/EX EXME M MEMANYE
101
—* 102 [/ﬂ 101
2
i \J_ﬂ
: —>
Instruction Registers 105 ALY
memory ™ = 105 o] 103 "
! Data
— W [e] memory
s O
0
SR] - -
(2F 2, _ -
(STERSJ \DEX. - EXMEM RegigterRd
- A4 L] R egisterRy | L
3 Forwarding
Unit
IDVEX. 1 ME MIVE.RegisterRd
RegisterR=

Clock cycle 4: forwarding $2 from EX/MEM

IF: add $14, §2, 52

IFAD

D or $13, §6, §2

EX: and
i

12, 52,85

MEM: =ub 52, 51, §3
-

HWAE T MER AWE
= —

B 106
L 5
i —»]
Instruction Registers ALU 5
memory I 102 D) s | e—s
1 104 Data
- [S N
—t
0
2Rt - L
13 (Rd) 12 12 -
1 .
GiR=) IDEX. EX/MEM RegisterRd
— RegisterRt J L |
N @ v
Forwarding
Unit
A .
pEx\ 2 2 ME MIWB. Re gisterRd
FegiderRs =
— = 2— 2

Clock cycle 5: forwarding $2 from MEM/WB

IF: w15, 100(52) ID: add $14, §2, 52 Ex: ar $13, §6, 2 MEM: and $12, $2, §5

IFAD E XM E M ME b AE

e %5
2] 106
REIE Yo
f —
Instruction Registers e - ALY 104
menory ™z I - n 5 — —
-2 Data
= -2 —
2 (Rt 1
14 (Rd) 13
2(R=) ID/EX,
L L FegisterR
Forwarding
\ Unit
IDEX. B
RegisterR = P
-

=

Lots of data hazards

» The first data hazard occurs during cycle 4.

— The forwarding unit notices that the ALU’s first source register for the
AND is also the destination of the SUB instruction.

— The correct value is forwarded from the EX/MEM register, overriding
the incorrect old value still in the register file.

= A second hazard occurs during clock cycle 5.
— The ALU’s second source (for OR) is the SUB destination again.

— This time, the value has to be forwarded from the MEM/WB pipeline
register instead.

= There are no other hazards involving the SUB instruction.
— During cycle 5, SUB writes its result back into register $2.

— The ADD instruction can read this new value from the register file in
the same cycle.

Complete pipelined datapath...so far

Control ut | MEMMYE
IFAD N, A g2 Il WE
Read Read ey 0]
register 1 data]
Read 2 ALY

register 2 \f Zeral

Wirite Read I ALUSIC “osit|y| gy Address
- n p—t
Instruction register data 2 | a Data
¥ —y it Registers 2 memony
data Sl |
wiite Read L) L,

Instr [15 - 0]
@_ RegDst data data
Rt ﬁ |]

Rd
> 1 -
Rs W, E XMEM RegisterRd

i i | i i

~ -

™ Forwarding |+

Unit

. -y

ME MMB RegisterRd

What about stores?

= Two “easy” cases:

1 13
sw 54,0(@ [L

e]

Store Bypassing: Version 1

EX w4, 00F1) MEM: add F1, 52, §3
- —
IFAD ID/E X EXMEM MEMANE
Read Read
register 1 data
Read
register 2
Wirite e Addre sz
. 3 -
Instruction register data 2 Data
—y it Registers Memery
data
LI v
xtend
Rt P L
Rl | —
R= " HHMEM RegisterRd
. | I — . B
™ Forwarding
unitc |
L_j U ME MME . RegizterRd

Store Bypassing: Version 2

Ex swi1, 0(54) MEM: add $1, 2, §3

IFAD IDVE X EXMEM MEM ANE

Read Read ﬂ
register 1 data 1 1
Read 2 ALU
register 2 Zeral
Wirite Read 0 ALUSre Result Ly Address

- n p—t

Instruction register data 2 b ; » a Data

¥ —y it Registers JSS— memony

data T 1

Read . n
Ingtr [15 - 0]
- Reghst at data
Rt i |

Rl
R= H A MEM RegisterRd

L L ,__L_h\ L L

Forwarding
Unit

G _=r

ME MMB RegisterRd

What about stores?

= A harder case:

1 2

5 6
w $1, 0(52) E_HJ_CQ_

3 4
B
o ST, 064) I___B w

= Inwhat cycle is:
— The load value available? ¢
— The store value needed?

= What do we have to add to the datapath? (handout)

Load/Store Bypassing: Extend the Datapath

FormardC

IFAD IDVE X EXMEM

Read Read /E\
register 1 data 1 1
Read 2 ALU
register 2 E Zeral
Wirite Read A | Resur) ;dress
- n r—
Instruction register data 2 b ; a Data
¥ —y it Registers 2 memony
data 1

Birite R ead

Ingtr [15 - 0] data cata || 1
@_ RegDst
Rt (ﬁ I eeeeely] | 0

Rd
» 4 C -
Rs W, E X MEN Re gisterRd

L L ,__L_h\ L L

. Forwarding
Sequence : Uit

ME MMB RegisterRd

Summary

» |nreal code, most instructions are dependent upon other ones.
— This can lead to data hazards in our original pipelined datapath.

— Instructions can't write back to the register file soon enough for the
next two instructions to read.

» Forwarding eliminates data hazards involving arithmetic instructions.

— The forwarding unit detects hazards by comparing the destination
registers of previous instructions to the source registers of the current
instruction.

— Hazards are avoided by grabbing results from the pipeline registers
before they are written back to the register file.

= Next, we’ll finish up pipelining.
— Forwarding can’t save us in some cases involving lw.
— We still haven’t talked about branches for the pipelined datapath.

VA & & a

Miscellaneous comments

Each MIPS instruction writes to at most one register.

— This makes the forwarding hardware easier to design, since there is
only one destination register that ever needs to be forwarded.

Forwarding is especially important with deep pipelines like the ones in all
current PC processors.

Section 6.4 of the textbook has some additional material not shown here.

— Their hazard detection equations also ensure that the source register
is not $0, which can never be modified.

— There is a more complex example of forwarding, with several cases
covered. Take a look at it!

