Lecture 8

= Today
— Finish single-cycle datapath /control path 'Z
— Look at its performance and how to improve it.

T

Now \4161,. {ech'. V2.0

=

The final datapath

Add
PC 4

"-._____-_--__

R egyrite U ———

{ | i MeEmT ok
emToRe
Read Inzruction | _I[25-21]s g Foad R Memitiite it}
e o register 1 ot 1 ALU Read Read 1
5 Read address data M
Instruction register 2 Fead Wihite u
data 2 address X
0
whe DA
clata
MemRead
Regﬂst
IMs-o Sign

Control

The control unit is responsible for setting all the control signals so that
each instruction is executed properly.

— The control unit’s input is the 32-bit instruction word.
— The outputs are values for the blue control signals in the datapath.

Most of the signals can be generated from the instruction opcode alone,
and not the entire 32-bit word.

To illustrate the relevant control signals, we will show the route that is
taken through the datapath by R-type, lw, sw and beq instructions.

R-type instruction path

= The R-type instructions include add, sub, and, or, and slt.

VY

= The ALUOp is determined by the instruction’s “func” field.
r———

_;,-gc,:]

Add
PC 4
Read Instuction 1[25 - 21] Fead ——
&

address [31-0] register 1 i

| [20- 18] Fead

Instruction : s

ey register 2 dzte:g

Witite

register .

115 -11] warte | edisters

! Pilata

) Resps

[15-0] Sign

end

=

R Rz
address cata
Write

address

wie Do
data T

rqemRead ‘) D

Lo

flemToReq

lw instruction path

vt =MFrles

) - %]
ropi

4 —b/
| oo
125 - 21] Read Read
register 1 data 1 ALU — Read Read

Read Instuction
address [314]

| [200-1E]
Instruction ?eZia;er 5 Read Tero address data
ey . dete Result Witite
ite address
register) irite Data
1[5 -11] e edsters datg TTEMOLY
=1 data
¢ =)
]
g I
e

= An example store instruction is sw $a0, 16(5sp).

sw instruction path

= The ALUOp must be 010 (add), again to compute the effective address.

Fead Instruction
address [31-0]

Instruction
ey

R Rz
address cata
Write
address
Write
data

Data
Moy

Add
4
I[25 - 21] Fead Rend
register 1 data 1
| [20- 18]
L Fead
register 2 Read
. data 2
Witite
register .
I[15-11] Wirite: Registers
! data
Reghst
1112 -0] Sign

end

EDo

lemToReg

beq instruction path

The branch may
or may not be

)

dd

taken, depending
on the ALL’s Zero
output

4 —

N

Regrite
Read Instruction 125 -21] Read | Read
address [31-0] register 1 clata 1]
| [20- 18]
Instruction ! rReZ?ger 2 Read
MEemory . data 2
Wiite
register A
I[15-11] rite Registers
L data
Reghst
1[15-0] Sign
exterl

(rs-vd) =87

eminrite MemToReqy

Rz Read 1
address data
Wirite u
address X

. Data o
irite

" data

M em P e

ALUSrz ‘ |

Control signal table

—

Operation | RegDst | RegWrite | ALUSrc | ALUOp | MemWrite | MemRead | MemToReg f:fr’r
)1 add 1 1 0o |/010 0 0 0
sub 1 1 0 110 0 0 0
and 1 1 0 000 0 0 0
or 1 1 0 [\ o001) 0 0 0
slt 1 1 o |\ 0 0 0
lw 0 1 1 | /A70) 0 1 1
n sw | /7 x) 0 1 010 1 0 X
beq | (xJ 0 0 11 0 0 X
- e

= sw and beq are the only instructions that do not write any registers.
» |w and sw are the only instructions that use the constant field. They also
depend on the ALU to compute the effective memory address.

= ALUOp for R-type instructions depends on the instructions’ func field.
= The PCSrc control signal (not listed) should be set if the instruction is beq

@the ALU’s Zero output is true. -

Generating control signals

= The control unit needs 13 bits of inputs.

— Six bits make up the instruction’s opcode.

— Six bits come from the instruction’s func field.

— It also needs the Zero output of the ALU.
The control unit generates 10 bits of output, corresponding to the signals

mentioned on the previous page.
You can build the actual circuit by using big K-maps, big Boolean algebra,

or big circuit design programs.
The textbook presents a slightly different control unit.

ALUSrs

Fead Instrudion
address [31-0]

Mem\rite

memRead

MemToR ey

Instruction
memory

(uwe

Summary of Single-Cycle Implementation

= A datapath contains all the functional units and connections necessary to
implement an instruction set architecture.

— For our single-cycle implementation, we use two separate memories,
an ALU, some extra adders, and lots of multiplexers.

— MIPS is a 32-bit machine, so most of the buses are 32-bits wide.

» The contighunit tells the datapath what to do, based on the instruction
that’s currently being executed.

— Our processor has ten control signals that regulate the datapath.

— The control signals can be generated by a combinational circuit with
the instruction’s 32-bit binary encoding as input.

= Next, we’ll see the performance limitations of this single-cycle machine
and try to improve upon it.

10

Single-Cycle Performance

= We just saw a MIPS single-cycle datapath and control unit.

= Now we’ll explore factors that contribute to a processor’s@xecution
time, and specifically at the performance of the single-cycle machine.

Next time, we'll explore how to improve on the single cycle machine’s
performance using pipelining.

Three Components of CPU Performance

| 1l
J v 7
CPU time, , = Instructions executed, ° " Elock cycle time,

/’

9o Cycles Per Instruction @

[

Instructions Executed

= |nstructions executed:
— We are not interested in the static instruction count, or how many

e

lines of code are in a program. - 209!

— Instead we care about the dynamic instruction count, or how many
instructions are actually executed when the program runs.

= There are three lines of code below, but how many instructions are
actually executed? 2 sdedie

= 1i $a0, 1000—F— I x)

ostrich: sub $a0, $a0, 1 — ——f—1 000 ¥
bhe $a0, 30, Ostrich L\ _ |0mx

-

Clock cycle time

. -
k| C'ycl,e
pPoxied

= One “cycle” is the minimum time it takes the CPU to do any work.

— The clock cycle time or clock period is just the length of a cycle.

— The clock rate, or frequency, is the reciprocal of the cycle time.
. Generall;f?_a_hi-éher frequency is better.
= Some examples illustrate some typical frequencies.

— A 500MHz processor has a cycle time of 7 2 ws>

— A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps).

—

How the add goes through the datapath

PC+4
Addd
PC 4
R ecrite
—
Read Instruction 1[25 - 21701004 y— l T e

address [310]+ ; Read |

i S Read Read
1[20 -18] 01010
- [Read address data
Instruction - R
memory redister 2 i Viite
Wtite ® address
register tors Wiite Data

W"ﬂfﬂ, date RO

data T

MemResad
RegDst
1[15-0] Sign e S P PR
extend|™

=> Edge-triggered state elements

In an instruction like add $t1, 5t1, $t2, how do we know
$t1 is not updated until after its original value is read?
We’ll assume that our state elements are positive edge

triggered, and are updated only on the positive edge of a
clock signal.

— The register file and data memory have explicit write
- -___--_-_-_. -

control signals, RegWrite and MemWrite. These units
can be written to only if the control signal is asserted
and there is a positive clock edge.

— In asingle-cycle machine the PC is updated on each
clock cycle, so we don’t bother to give it an explicit
write control signal.

Redrite

Fead
register1

Fread
data 1

Read
register 2 Read
. data 2
Witite

register

Wiite Registers
data

bl emirite

|
Fead R
address data
Witte
address
Data
IRy

MemResd

Wirte
data

puy
Clogd

The datapath and the clock

1. On a positive clock edge, the PC is updated with a new address.

2., A new instruction can then be loaded from memory. The control unit sets
the datapath signals appropriately so that

— registers are read, «
— ALU output is generated, «

— data memory is read or written, and
— branch target addresses are computed.

3. Several things happen on the next positive clock edge.
— The register file is updated for arithmetic or lw instructions.

— Data memory is written for a sw instruction. _
— The PC is updated to point to the next instruction.™

* In asingle-cycle datapath everything in Step 2 must complete within one
clock cycle, before the next positive clock edge.

How long is that clock cycle?

e

Compute the longest path in the add instruction

PC+d
t’quj
< ?“5 i
4 ; M
T u
H
Add
[.
L Shift
e Zns left 2
PCSre
R ecrite
vz z v | f MemToR
Read Ingtruction | 1[25-21] Y- Ml it emToRey
‘['aa address [31-0] [E Readl |
' #t Read Read
1 [20 - 16] —
Instruction ! Read sddress data
memory redister 2 Fead Wiite
] data 2
Wit address
redister sters Viite Data
Zns T u data
data
RegDst
I15-0 O ns Sign

extend™

The slowest instruction...

= |f all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.

* For example, lw 5t0, -4(5sp) is the slowest instruction needing gns.
— Assuming the circuit latencies below.

Crelebiy: J &)= 8"‘5

Bo L by =3 §=Cw A

FEead Instruction ’1425—21]
address [31-0] [

Fead R
register 1 data 1(

ALU Eeanl Eear]
Zero address data

1[20 - 18] "
Instruction -
memory register 2 dzteaag 0 White

Witte M address
register :: Data

; WE Registers ite
data r

] 2 ns data oAy
0ns 1ns

1[15-0] Sign

2ns

2 ns

The slowest instruction...

= |f all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.

» For example, lw 5t0, -4(5sp) needs 8ns, assuming the delays shown here.
reading the instruction memory ns

reading the base register $sp 1ns
computing memory address $sp-4 2ns 8ns
reading the data memory 2ns
storing data back to $t0 1ns
FEead Instruction 1[25-21]
address [31-0] Read Read
regigter 1 data 1 Read Read
I [20 - 16] — [=1)
Instruction 1 Read sodress data M
memony register 2 dzteaag Write u
Wirite address X
register) \iite Data 0
2ns E\;{me Registers data memory 0 ns
a
Z2ns
0 ns 1ns
115-0] Sign
extend

...determines the clo ime

= |f we make the cycle time 8ns then every instruction will take 8ns, even
if they don’t need that much time.

* For example, the instruction add $s4, 5t1, 5t2 really needs just éns.

reading the instruction memory 2 ns
reading registers 5t1 and 5t2 1ns A
, ns
computing $t1 + 5t2 Zns
storing the result into $s0 1ns
FEead Instruction 1[25-21]
address [31-0] Read Read
regigter 1 data 1
1[20 - 16] — G- Read e 1
Instruction F Read address data M
memony register 2 dzteaag Write u
Wtite address x
register) \iite Data 0
2ns Witite Registers data memory 0 ns
data
2 ns
0ns 1ns
115-0] Sign
extendl
0ns

Performance of Single-cycle Design

CPU time,; = Instru/!éns executed; * CPlL p * Clock cycle time
N

Dl n xiw P10

N:J bl“'lmt i'SI\-'s =7 &,cuds

How bad is this?

With these same compapent delays, a sw instruction would need 7ns, and
beq would need just

Let’s consider the gcc instruction mix from p. 189 of the textbook.

Instruction | Frequency
—>= | Arithmetic 48%

Loads 3_?3_1%
Stores 11%
Branches 19%

With a single-cycle datapath, each instruction would require 8ns.

But if we could execute instructions as fast as possible, the average time
per instruction for gcc would be:

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns

e —
e ——

The single-cycle datapath is about 1.26 times slower!

It gets worse...

= We've made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns. P 3 ’536',#4
+ For comparison, an ALU on an AMD Opteron takes ~{,3ns.
= Qur worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle i entation would be stuck at <10Mhz.
— Caches will improveﬂ-::%ase aze?s time, not worst case. .
= Tying frequency to worst case path violates first law of performance!!
— “Make the common case fast” (we’ll rewvisit this often)

Summary

= Performance is one of the most important criteria in judging systems.
— Here we’ll focus on Execution time.

= Qur main performance equation explains how performance depends on
several factors related to both hardware and software.

CPU time, ,, = Instructions executed, " CPl, , " Clock cycle time,

= |tcan be hard to measure these factors in real life, but this is a useful
guide for comparing systems and designs.

= A single-cycle CPU has two main disadvantages.
— The cycle time is limited by the worst case latency.

— It isn’t efficiently using its hardware.

= Next time, we’ll see how this can be rectified with pipelining.

