
1

CSE378 – Lecture 3

 Announcements

 Today:

— Finish up memory

— Control-flow (branches) in MIPS

• if/then

• loops

• case/switch

— �(maybe) Start: Array Indexing vs. Pointers

• In particular pointer arithmetic

• String representation

2

Quick Review

 Registers x Memory

lw $t0, 4($a0)

$a0 is simply another name for register 4

$t0 is another name for register ____ (green sheet)

What does $a0 contain?

What will $t0 contain after the instruction is executed? (address)

3

An array of words

 Remember to be careful with memory addresses when accessing words.

 For instance, assume an array of words begins at address 2000.

— The first array element is at address 2000.

— The second word is at address 2004, not 2001.

 Example, if $a0 contains 2000, then

lw $t0, 0($a0)

accesses the first word of the array, but

lw $t0, 8($a0)

would access the third word of the array, at address 2008.

4

Memory alignment

 Keep in mind that memory is byte-addressable, so a 32-bit word actually

occupies four contiguous locations (bytes) of main memory.

 The MIPS architecture requires words to be aligned in memory; 32-bit

words must start at an address that is divisible by 4.

— 0, 4, 8 and 12 are valid word addresses.

— 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses.

— Unaligned memory accesses result in a bus error, which you may have

unfortunately seen before.

 This restriction has relatively little effect on high-level languages and

compilers, but it makes things easier and faster for the processor.

0 1 2 3 4 5 6 7 8 9 10 11

Word 1 Word 2 Word 3

Address

8-bit data

5

Pseudo-instructions

 MIPS assemblers support pseudo-instructions that give the illusion of a

more expressive instruction set, but are actually translated into one or

more simpler, “real” instructions.

 For example, you can use the li and move pseudo-instructions:

li $a0, 2000 # Load immediate 2000 into $a0

move $a1, $t0 # Copy $t0 into $a1

 They are probably clearer than their corresponding MIPS instructions:

addi $a0, $0, 2000 # Initialize $a0 to 2000

add $a1, $t0, $0 # Copy $t0 into $a1

 We’ll see lots more pseudo-instructions this semester.

— A complete list of instructions is given in Appendix A of the text.

— Unless otherwise stated, you can always use pseudo-instructions in

your assignments and on exams.

http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf

6

Control flow in high-level languages

 The instructions in a program usually execute one after another, but it’s

often necessary to alter the normal control flow.

 Conditional statements execute only if some test expression is true.

// Find the absolute value of a0

v0 = a0;

if (v0 < 0)

v0 = -v0; // This might not be executed

v1 = v0 + v0;

 Loops cause some statements to be executed many times.

// Sum the elements of a five-element array a0

v0 = 0;

t0 = 0;

while (t0 < 5) {

v0 = v0 + a0[t0]; // These statements will

t0++; // be executed five times

}

7

Control-flow graphs

// Find the absolute value of a0

v0 = a0;

if (v0 < 0)

v0 = -v0;

v1 = v0 + v0;

// Sum the elements of

v0 = 0;

t0 = 0;

while (t0 < 5) {

v0 = v0 + a0[t0];

t0++;

}

8

 MIPS’s control-flow instructions

j // for unconditional jumps

bne and beq // for conditional branches

slt and slti // set if less than (w/o and w an immediate)

 Now we’ll talk about

— MIPS’s pseudo branches

— if/else

— case/switch

MIPS control instructions

9

 The MIPS processor only supports two branch instructions, beq and bne, but

to simplify your life the assembler provides the following other branches:

blt $t0, $t1, L1 // Branch if $t0 < $t1

ble $t0, $t1, L2 // Branch if $t0 <= $t1

bgt $t0, $t1, L3 // Branch if $t0 > $t1

bge $t0, $t1, L4 // Branch if $t0 >= $t1

 There are also immediate versions of these branches, where the second

source is a constant instead of a register.

 Later this quarter we’ll see how supporting just beq and bne simplifies the

processor design.

Pseudo-branches

10

 Most pseudo-branches are implemented using slt. For example, a branch-
if-less-than instruction blt $a0, $a1, Label is translated into the

following.

slt $at, $a0, $a1 // $at = 1 if $a0 < $a1

bne $at, $0, Label // Branch if $at != 0

 This supports immediate branches, which are also pseudo-instructions.
For example, blti $a0, 5, Label is translated into two instructions.

slti $at, $a0, 5 // $at = 1if $a0 < 5

bne $at, $0, Label // Branch if $a0 < 5

 All of the pseudo-branches need a register to save the result of slt, even

though it’s not needed afterwards.

— MIPS assemblers use register $1, or $at, for temporary storage.

— You should be careful in using $at in your own programs, as it may be

overwritten by assembler-generated code.

Implementing pseudo-branches

11

Translating an if-then statement

 We can use branch instructions to translate if-then statements into MIPS

assembly code.

v0 = a0; move $v0 $a0

if (v0 < 0) bge $v0, $0 Label

v0 = -v0; sub $v0, 0, $v0

v1 = v0 + v0; Label: add $v1, $v0, $v0

 Sometimes it’s easier to invert the original condition.

— In this case, we changed “continue if v0 < 0” to “skip if v0 >= 0”.

— This saves a few instructions in the resulting assembly code.

12

What does this code do?

label: sub $a0, $a0, 1

bne $a0, $zero, label

13

Loops

Loop: j Loop # goto Loop

for (i = 0; i < 4; i++) {

// stuff

}

add $t0, $zero, $zero # i is initialized to 0, $t0 = 0

Loop: // stuff

addi $t0, $t0, 1 # i ++

slti $t1, $t0, 4 # $t1 = 1 if i < 4

bne $t1, $zero, Loop # go to Loop if i < 4

14

.text

main:

li $a0, 0x1234 ## input = 0x1234

li $t0, 0 ## int count = 0;

li $t1, 0 ## for (int i = 0

main_loop:

bge $t1, 32, main_exit ## exit loop if i >= 32

andi $t2, $a0, 1 ## bit = input & 1

beq $t2, $0, main_skip ## skip if bit == 0

addi $t0, $t0, 1 ## count ++

main_skip:

srl $a0, $a0, 1 ## input = input >> 1

add $t1, $t1, 1 ## i ++

j main_loop

main_exit:

jr $ra

 Let’s write a program to count how many bits are set in a 32-bit word.

Control-flow Example

int count = 0;

for (int i = 0 ; i < 32 ; i ++) {

int bit = input & 1;

if (bit != 0) {

count ++;

}

input = input >> 1;

}

 If there is an else clause, it is the target of the conditional branch

— And the then clause needs a jump over the else clause

// increase the magnitude of v0 by one

if (v0 < 0) bge $v0, $0, E

v0 --; sub $v0, $v0, 1

j L

else

v0 ++; E: add $v0, $v0, 1

v1 = v0; L: move $v1, $v0

— Drawing the control-flow graph can help you out.

15

Translating an if-then-else statements

16

Case/Switch Statement

 Many high-level languages support multi-way branches, e.g.

switch (two_bits) {

case 0: break;

case 1: /* fall through */

case 2: count ++; break;

case 3: count += 2; break;

}

 We could just translate the code to if, thens, and elses:

if ((two_bits == 1) || (two_bits == 2)) {

count ++;

} else if (two_bits == 3) {

count += 2;

}

 This isn’t very efficient if there are many, many cases.

17

Case/Switch Statement

switch (two_bits) {

case 0: break;

case 1: /* fall through */

case 2: count ++; break;

case 3: count += 2; break;

}

 Alternatively, we can:

1. Create an array of jump targets

2. Load the entry indexed by the variable two_bits

3. Jump to that address using the jump register, or jr, instruction

18

Representing strings

 A C-style string is represented by an array of bytes.

— Elements are one-byte ASCII codes for each character.

— A 0 value marks the end of the array.

32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

19

Null-terminated Strings

 For example, “Harry Potter” can be stored as a 13-byte array.

 Since strings can vary in length, we put a 0, or null, at the end of the string.

— This is called a null-terminated string

 Computing string length

— We’ll look at two ways.

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

20

int foo(char *s) {

int L = 0;

while (*s++) {

++L;

}

return L;

}

What does this C code do?

21

Array Indexing Implementation of strlen

int strlen(char *string) {

int len = 0;

while (string[len] != 0) {

len ++;

}

return len;

}

22

Pointers & Pointer Arithmetic

 Many programmers have a vague understanding of pointers

— Looking at assembly code is useful for their comprehension.

int strlen(char *string) {

int len = 0;

while (string[len] != 0) {

len ++;

}

return len;

}

int strlen(char *string) {

int len = 0;

while (*string != 0) {

string ++;

len ++;

}

return len;

}

23

What is a Pointer?

 A pointer is an address.

 Two pointers that point to the same thing hold the same address

 Dereferencing a pointer means loading from the pointer’s address

 A pointer has a type; the type tells us what kind of load to do

— Use load byte (lb) for char *

— Use load half (lh) for short *

— Use load word (lw) for int *

— Use load single precision floating point (l.s) for float *

 Pointer arithmetic is often used with pointers to arrays

— Incrementing a pointer (i.e., ++) makes it point to the next element

— The amount added to the point depends on the type of pointer

• pointer = pointer + sizeof(pointer’s type)

1 for char *, 4 for int *, 4 for float *, 8 for double *

24

What is really going on here…

int strlen(char *string) {

int len = 0;

while (*string != 0) {

string ++;

len ++;

}

return len;

}

25

Pointers Summary

 Pointers are just addresses!!

— “Pointees” are locations in memory

 Pointer arithmetic updates the address held by the pointer

— “string ++” points to the next element in an array

— Pointers are typed so address is incremented by sizeof(pointee)

25

