
Verilog
Winter ’09 CSE378 Section for January 22

Jacob Nelson

Agenda

• Verilog

• Two’s complement arithmetic

• Using stack

Verilog tips and traps

= vs. <=

• Simple rule:

• If you want sequential logic, use
always @(posedge clk) with <=.

• If you want combinational logic, use
always @(*) with =.

HW Tools:
pain in digital form?

• We should teach ideas, not tools!
But tools help express ideas

• HW tools often kind of suck, but
 don’t blame tools for bad craftsmanship,
 do good craftsmanship with bad tools.

• Patience and care will win

Datatypes

• “vector”: wire/reg
any width you want

• wire x = 1’b1;
wire [7:0] = 7’b10110100;

• 8’d10, 8’b10, 8’o10, 8’h10

• also integer, float, time, but we’ll ignore.

Comparators

• assign isZero = (a == 0);

• assign isGreater = (a > b); // unsigned!!!
assign isLTZ = (a < 0); // is this ever true?

• can do signed compares if ALL signals
involved are declared “signed”.
 wire signed [7:0] a, b; assign a = b < 0;
 or
 wire [7:0] a, b;
 assign a = $signed($signed(b) < 0);

Concatenation and
replication

• wire a = 8’b10110100;
wire [?:0] b = { 6’b0, a, 2’b0 };

• wire x = 1’b1;
wire [7:0] y = {7{x}};

wire [?:0] c = { {6{a[7]}}, a, 2’b0};

Shifting

• wire [7:0] x = 7’b10110100;

• wire [?:0] y = x << 2;

is it
wire [7:0] x = { x[7:2], 2’b0 };
or
wire [9:0] x = { x[7:0], 2’b0 };

Adders/subtractors

• assign f = a + b;
assign g = a - b;

• wire [8:0] s, t;
wire [7:0] a, b;
assign s = {0,a} + {0,b}; // pick up carry out
assign t = a + b; // equivalent

• what about multiplication? division?

Logic

• wire a = 1’b0;
wire b = 1’b1;
wire c = 1’b1;
wire f = c && (a || b);

• wire [7:0] d = 8’b10110100;
wire [7:0] e = 8’b11001100;
wire [7:0] x = 8’b00000001;
wire [7:0] g = x | (d & e);

Reduction operators

• wire [7:0] foo = 8’b10110100

wire anyFoo0 = |foo;
wire anyFoo1 = foo != 8’b0;
wire anyFoo2 = foo[7] || foo[6] || ...

wire allFoo0 = &foo;
wire allFoo1 = foo == 8’b11111111;

wire parity = ^foo; // xor reduction

?:, If, Case: Muxes
• assign f =

 s[1] ?
 (s[0] ? a : b) :
 (s[0] ? c : d);

 always @(*)
 case (s)
 2'b00 : g = a;
 2'b01 : g = b;
 2'b10 : g = c;
 default: g = d; // 2’b11
 endcase

 always @(*)
 if (s == 2'b00)
 h = a;
 else if (s == 2'b01)
 h = b;
 else if (s == 2'b10)
 h = c;
 else // s == 2'b1
 h = d;

Literals: 32 bits, decimal

• wire [7:0] foo = 127; // synthesis warning!

• wire [7:0] foo = 8’d127;

• wire [7:0] foo = 8’b11111111;

• wire [7:0] foo = 8’hff;

• wire [7:0] foo = 8’hFF;

• watch out: 1010 looks like 4’b1010!

Truncation

wire [7:0] a = 8’hAB;
wire b; // oops! forgot width
wire [7:0] c;

assign b = a; // synthesis warning if lucky.

assign c = a;

Logic vs. registers
module foo (a,b,f,g);
 input wire a, b;
 output wire f;
 output reg g;

 assign f = a && b;
 always @(*)
 g = a && b;
endmodule

module(clk, d, q);
 input wire clk, d;
 output reg q;

 always @(posedge clk)
 q <= d;
endmodule

reg vs. wire

• wire f; reg g, h;

assign f = a & b;

always @(*) // equivalent to above
 g = a & b;

always @(posedge clk)
 h <= a & b;

Assign in one block

input wire a, b;
output reg f;

always @(posedge clk)
 if (a) f <= 1’b0; // race!

always @(posedge clk)
 if (b) f <= 1’b1; // race!

= vs. <=

• Simple rule:

• If you want sequential logic, use
always @(posedge clk) with <=.

• If you want combinational logic, use
always @(*) with =.

= vs. <=
• always @(posedge clk)

 begin
 f <= a + b;
 g <= f + c;
 end

• always @(posedge clk)
 begin
 f = a + b;
 g = f + c; // a + b + c
 end

• always@(posedge clk)
 begin
 f2 <= f1;
 f3 <= f2;

 f4 = f3;
 f5 = f4; // f5 = f3 !!

 f7 = f6;
 f6 = f5;
 end

More specifically,
initial
 state = 0;

always @(posedge clk)
 begin
 if (state == 0) state = 1;
 if (state == 1) state = 2;
 if (state == 2) state = 0;
 end

Aargh.

SNUG San Jose 2000 Nonblocking Assignments In Verilog
Rev 1.2 Synthesis, Coding Styles that Kill

6

Figure 1 - Verilog "stratified event queue"

The active events queue is where most Verilog events are scheduled, including blocking
assignments, continuous assignments, $display commands, evaluation of instance and primitive
inputs followed by updates of primitive and instance outputs, and the evaluation of nonblocking
RHS expressions. The LHS of nonblocking assignments are not updated in the active events

queue.

Events are added to any of the event queues (within restrictions imposed by the IEEE Standard)
but are only removed from the active events queue. Events that are scheduled on the other event
queues will eventually become "activated," or promoted into the active events queue. Section 5.4
of the IEEE 1364-1995 Verilog Standard lists an algorithm that describes when the other event
queues are "activated."

Two other commonly used event queues in the current simulation time are the nonblocking

assign updates event queue and the monitor events queue, which are described below.

The nonblocking assign updates event queue is where updates to the LHS expression of
nonblocking assignments are scheduled. The RHS expression is evaluated in random order at the
beginning of a simulation time step along with the other active events described above.

The monitor events queue is where $strobe and $monitor display command values are scheduled.
$strobe and $monitor show the updated values of all requested variables at the end of a
simulation time step, after all other assignments for that simulation time step are complete.

Other specific PLI commands

Update LHS of nonblocking assignments

$monitor command execution

$strobe command execution

#0 blocking assignments

Active Events

Inactive Events

Monitor Events

Nonblocking Events

Blocking assignments

Evaluate RHS of nonblocking

assignments

$display command execution

Evaluate inputs and change

outputs of primitives

Continuous assignments

These events may

be scheduled in

any order

from Cliff Cummings’ “Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”

http://csg.csail.mit.edu/6.375/papers/cummings-nonblocking-snug99.pdf
http://csg.csail.mit.edu/6.375/papers/cummings-nonblocking-snug99.pdf

Incomplete
sensitivity lists

• always @(a or b) // it’s or, not ||
 f = a & b;

• always @(a)
 f = a & b;

• always
 f = a & b;

• Just use always@(*) for combinational logic

Enables and Latches
• always @(posedge clk)

 if (a == 1)
 f <= 1;
 else if (a == 2)
 f <= 2;
 else if (a == 3)
 f <= 3;

• implicitly:
 else
 f <= f;

• always @(*)
 if (a == 1)
 f = 1;
 else if (a == 2)
 f = 2;
 else if (a == 3)
 f = 3;

• implicitly:
 else
 f = f;
this is memory!

= vs. <=

• Simple rule:

• If you want sequential logic, use
always @(posedge clk) with <=.

• If you want combinational logic, use
always @(*) with =.

Combinational and
Sequential

input wire a, b, s;
output reg f, g, h;

always @(posedge clk)
 begin

 f <= (a & ~s) | (b & s);

 g <= s ? a : b;

 if (s)
 h <= a;
 else
 h <= b;

 end

Displaying things

• works for most stuff:
 $display(“the answer is %h.”, ans);

• for nonblocking assignments, you may
sometimes want:
 $strobe(“the answer is %h.”, ans);
(see Aargh. for reason)

X’s

• X’s are for undefined values:
 wire a;
 $display(a); // prints an X

• Pins that aren’t hooked up will be X’s:
Often, 32’hxxxxxxf4 indicates an Active-
HDL bus with default width.

• 1’b1 & 1’bX yields 1’bX
1’b1 + 1’bX yields 1’bX

Z’s

• Z’s are for bus sharing. You won’t need this.

• a <= 1’bZ; b <= 1’bZ;
a <= 2’b0; b <= 1’b1;
// a will be 0 and b will be 1

• Z’s turn into X’s sometimes:
1’b1 & 1’bZ yields 1’bX.
1’b1 + 1’bZ yields 1’bX.

Initial values
• Synthesis sometimes

ignores (!?!), so better
include a reset line.

• Maybe:
 reg foo = 1’b1;

• Maybe:
 initial begin
 foo = 1’b1;
 end

• module fooReg;
 input wire newFoo;
 output reg foo;

 initial #0 foo = 1’b0;

 always @(posedge clk)
 if (reset == 1’b1)
 foo <= 1’b0;
 else
 foo <= newFoo;
endmodule

Whew.

Questions?

