
Avoiding pain in 378
Winter ’09 CSE378 Section for January 8

Jacob Nelson



Agenda

• Pep talk

• Lab overview

• SPIM

• Verilog

• Mapping Verilog to hardware

• Verilog tips and traps



My desktop circa 1998

• sun 3/50

RAL 1989 Annual Report



Your processor
>>

Sun 3/50



What can we do?

http://www.xkl.com

http://pulse-sequencer.sourceforge.net

http://www.xkl.com
http://www.xkl.com
http://pulse-sequencer.sourceforge
http://pulse-sequencer.sourceforge


Free as in 
{ freedom | beer }

simulation: Icarus Verilog; GTKWave

schematics/board design: gEDA 

chips/implementation: Xilinx, Altera, etc.

boards: cheap PCB houses; toaster oven

programming/debugging: OpenOCD



Not doing it for you?



PARALLEL CRISIS!!!

The Landscape of Parallel Computing Research: A View From Berkeley



Funky parallelism

• Hardware is inherently parallel

• FPGA = 
Fine-grained massively parallel computer

• Verilog = 
Funky parallel programming language



Lab Process and Goals



Four main lab tasks

• One: build single-cycle datapath; create 
jump/branch logic

• Two: build control logic for single-cycle CPU

• Three: add pipeline registers

• Four: finish pipline with forwarding and 
hazard detection



First task

• Mostly connecting things together in BDE;
write Verilog for jumps and branches 

• We provide testbenches, but they’re 
incomplete (add tests?)

• Final step: write small program to flash 
lights





Our hardware

• Altera Cyclone II EP2C20 

• 18,752 4-input lookup tables

• 18,752 one-bit registers

• 240 kilobytes of memory on the chip

• (everything else on the board)



A few tools

• Aldec Active-HDL simulates Verilog and 
BDE

• Assembler turns code into bits for 
memory

• Altera Quartus does three things:

• translates Verilog to hardware primitives

• arranges hardware primitives on the chip

• downloads design to chip



SPIM
Registers / Memory / Load code / Set breakpoints / IO



Hardware primitives



Logic
module foo (a,b,f,g);
   input wire a, b;
   output wire f;
   output reg g;

   assign f = a && b;
   always @(*) 
      g = a && b;
endmodule



Registers

input wire nextFoo;
reg foo;

always @(posedge clk)
   foo <= nextFoo;



Altera Corporation 2–3
February 2007 Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–2 shows a Cyclone II LE.

Figure 2–2. Cyclone II LE 

Each LE’s programmable register can be configured for D, T, JK, or SR 
operation. Each register has data, clock, clock enable, and clear inputs. 
Signals that use the global clock network, general-purpose I/O pins, or 
any internal logic can drive the register’s clock and clear control signals. 
Either general-purpose I/O pins or internal logic can drive the clock 
enable. For combinational functions, the LUT output bypasses the 
register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing 
resources. The LUT or register output can drive these three outputs 
independently. Two LE outputs drive column or row and direct link 
routing connections and one drives local interconnect resources, allowing 
the LUT to drive one output while the register drives another output. This 
feature, register packing, improves device utilization because the device 
can use the register and the LUT for unrelated functions. When using 
register packing, the LAB-wide synchronous load control signal is not 
available. See “LAB Control Signals” on page 2–8 for more information.

labclk1
labclk2

labclr2

LAB Carry-In

Clock &
Clock Enable

Select

LAB Carry-Out

Look-Up
Table
(LUT)

Carry
Chain

Row, Column,
And Direct Link 
Routing

Row, Column,
And Direct Link 
Routing

Programmable
Register

CLRN

D Q

ENA

Register Bypass

Packed
Register Select

Chip-Wide
Reset

(DEV_CLRn)

labclkena1
labclkena2

Synchronous
Load and
Clear Logic

LAB-Wide
Synchronous

Load
LAB-Wide

Synchronous
Clear

Asynchronous
Clear Logic

data1
data2
data3

data4

labclr1

Local Routing

Register Chain
OutputRegister

Feedback

Register Chain
Routing From
Previous LE

Our 
Computational

Substrate
(from Altera Cyclone II datasheet)



Muxes
• assign f = 

  s[1] ? 
    (s[0] ? a : b) : 
    (s[0] ? c : d);

   always @(*)
    case (s)
     2'b00 : g = a;
     2'b01 : g = b;
     2'b10 : g = c;
     default: g = d; // 2’b11
    endcase 

   always @(*)
     if (s == 2'b00) 
        h = a;
     else if (s == 2'b01) 
        h = b;
     else if (s == 2'b10) 
        h = c;
     else  // s == 2'b1
        h = d; 
        



Adders/subtractors

• assign f = a + b;
assign g = a - b;

• wire [8:0] s;
wire [7:0] a, b;
assign s = {0,a} + {0,b};  // pick up carry out

• How big are they? How fast?



Comparators

• assign isZero = (a == 0);

• assign isGreater = (a > b);   // unsigned!!!
assign isLTZ = (a < 0);   // is this ever true?

• can do signed compares if ALL signals 
involved are declared “signed”.
   wire signed [7:0] a, b;

• How big? How fast?



Check with RTL view



Verilog tips and traps



HW Tools: 
pain in digital form?

• We should teach ideas, not tools!
But tools help express ideas

• HW tools often kind of suck, but
  don’t blame tools for bad craftsmanship,
  do good craftsmanship with bad tools.

• Patience and care will win



=   vs.   <=

• Simple rule:

• If you want sequential logic, use 
always @(posedge clk) with <=.

• If you want combinational logic, use 
always @(*) with =.



Constants: 32 bits, 
decimal

• wire [7:0] foo = 127;  // synthesis warning!

• wire [7:0] foo = 8’d127;

• wire [7:0] foo = 8’b11111111; 

• wire [7:0] foo = 8’hff; 

• wire [7:0] foo = 8’hFF;

• watch out: 1010 looks like 4’b1010!



Truncation

wire [7:0] a = 8’hAB;
wire b;                       // oops! forgot width
wire [7:0] c;

assign b = a;      // synthesis warning if lucky.

assign c = a;



reg vs. wire

• wire f;      reg g, h;

assign f = a & b;

always @(posedge clk)
  g <= a & b;

always @(*)
  h = a & b;



Assign in one block

input wire a, b;
output reg f;

always @(posedge clk)
   if (a) f <= 1’b0; // race!

always @(posedge clk)
   if (b) f <= 1’b1; // race!



=   vs.   <=

• Simple rule:

• If you want sequential logic, use 
always @(posedge clk) with <=.

• If you want combinational logic, use 
always @(*) with =.



=   vs.  <=
• always @(posedge clk)

  begin
    f <= a + b;
    g <= f + c;
  end

• always @(posedge clk)
  begin
    f = a + b;
    g = f + c;  // a + b + c
  end

• always@(posedge clk)
  begin
    f2 <= f1;
    f3 <= f2;

    f4 = f3;
    f5 = f4;   // f5 = f3 !!

    f7 = f6;
    f6 = f5;
  end



More specifically,
initial
  state = 0;

always @(posedge clk)
  begin
    if (state == 0) state = 1;
    if (state == 1) state = 2;
    if (state == 2) state = 0;
  end



Aargh.

SNUG San Jose 2000 Nonblocking Assignments In Verilog
Rev 1.2 Synthesis, Coding Styles that Kill

6

Figure 1 - Verilog "stratified event queue"

The active events queue is where most Verilog events are scheduled, including blocking
assignments, continuous assignments, $display commands, evaluation of instance and primitive
inputs followed by updates of primitive and instance outputs, and the evaluation of nonblocking
RHS expressions. The LHS of nonblocking assignments are not updated in the active events

queue.

Events are added to any of the event queues (within restrictions imposed by the IEEE Standard)
but are only removed from the active events queue. Events that are scheduled on the other event
queues will eventually become "activated," or promoted into the active events queue. Section 5.4
of the IEEE 1364-1995 Verilog Standard lists an algorithm that describes when the other event
queues are "activated."

Two other commonly used event queues in the current simulation time are the nonblocking

assign updates event queue and the monitor events queue, which are described below.

The nonblocking assign updates event queue is where updates to the LHS expression of
nonblocking assignments are scheduled. The RHS expression is evaluated in random order at the
beginning of a simulation time step along with the other active events described above.

The monitor events queue is where $strobe and $monitor display command values are scheduled.
$strobe and $monitor show the updated values of all requested variables at the end of a
simulation time step, after all other assignments for that simulation time step are complete.

Other specific PLI commands

Update LHS of nonblocking assignments

$monitor command execution

$strobe command execution

#0 blocking assignments

Active Events

Inactive Events

Monitor Events

Nonblocking Events

Blocking assignments

Evaluate RHS of nonblocking

assignments

$display command execution

Evaluate inputs and change

outputs of primitives

Continuous assignments

These events may

be scheduled in

any order

from Cliff Cummings’ “Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”

http://csg.csail.mit.edu/6.375/papers/cummings-nonblocking-snug99.pdf
http://csg.csail.mit.edu/6.375/papers/cummings-nonblocking-snug99.pdf


Incomplete 
sensitivity lists

• always @(a or b)   // it’s or, not ||
  f = a & b;

• always @(a)
  f = a & b;

• always
  f = a & b;

• Just use always@(*) for combinational logic



Enables and Latches
• always @(posedge clk)

  if (a == 1)
    f <= 1;
  else if (a == 2)
    f <= 2;
  else if (a == 3)
    f <= 3;

• implicitly:
  else 
    f <= f;

• always @(*)
  if (a == 1)
    f = 1;
  else if (a == 2)
    f = 2;
  else if (a == 3)
    f = 3;

• implicitly: 
  else
    f = f;
this is memory! 



=   vs.   <=

• Simple rule:

• If you want sequential logic, use 
always @(posedge clk) with <=.

• If you want combinational logic, use 
always @(*) with =.



Combinational and 
Sequential

input wire a, b, s;
output reg f, g, h;

always @(posedge clk)
  begin

    f <= (a & ~s) | (b & s);

    g <= s ? a : b;

    if (s)
      h <= a;
    else
      h <= b;

  end



Displaying things

• works for most stuff:
  $display(“the answer is %h.”, ans);

• for nonblocking assignments, you may 
sometimes want:
  $strobe(“the answer is %h.”, ans);
(see Aargh. for reason)



X’s

• X’s are for undefined values:
  wire a;
  $display(a);   // prints an X

• Pins that aren’t hooked up will be X’s:
Often, 32’hxxxxxxf4 indicates an Active-
HDL bus with default width.

• 1’b1 & 1’bX yields 1’bX
1’b1 + 1’bX yields 1’bX



Z’s

• Z’s are for bus sharing. You won’t need this.

• a <= 1’bZ;   b <= 1’bZ; 
a <= 2’b0;   b <= 1’b1;
// a will be 0 and b will be 1

• Z’s turn into X’s sometimes:
1’b1 & 1’bZ yields 1’bX.
1’b1 + 1’bZ yields 1’bX.



Initial values
• Synthesis sometimes 

ignores (!?!), so better 
include a reset line.

• Maybe:
  reg foo = 1’b1;

• Maybe:
  initial begin
    foo = 1’b1;
  end

• module fooReg;
  input wire newFoo;
  output reg foo;

  initial #0 foo = 1’b0;

  always @(posedge clk)
    if (reset == 1’b1)
      foo <= 1’b0;
  else
      foo <= newFoo;
endmodule



Whew.



Questions?


