
  

 

1

Instruction Level Parallelism (ILP)

Preserve the sequential semantics of the ISA but...

    try to execute as many instructions at once as we can.

� Review of dependences

� Renaming to eliminate false dependences

� Scoreboarding: hardware out-of-order execution

� Tomasulo's Algorithm: OOO execution + renaming

2

Review: Dependences
� Read-after-write (RAW)

� ADD $6, $4, $5
ADDI $7, $6, 2

� Also known as a �flow dependence�

� Also known as a �true dependence�

� Write-after-read (WAR)
� ADD $6, $4 , $5

ADDI $4, $4, 2

� Also known as an �anti-dependence�

� Write-after-write (WAW)
� ADD $6, $4, $5

...
ADD $6, $4, $5

� WAR and WAW are �false dependences�
� The dependences have to do with names, not values

� They can be eliminated by �re-writing the code�

3

Example Code

LD F6, 34(R2)

LD F2, 45(R3)

MULTD F0, F2, F4

SUBD F8, F6, F2

DIVD F10, F0, F6

ADDD F6, F8, F2

LD F6, 34(R2) LD F2, 45(R3)

MULTD F0, F2, F4SUBD F8, F6, F2

DIVD F10, F0, F6

ADDD F6, F8, F2

4

Example Code with Renaming

LD F6, 34(R2)

LD F2, 45(R3)

MULTD F0, F2, F4

SUBD F8, F6, F2

DIVD F10, F0, F6

ADDD F6 F12, F8, F2

LD F6, 34(R2) LD F2, 45(R3)

MULTD F0, F2, F4SUBD F8, F6, F2

DIVD F10, F0, F6

ADDD F12, F8, F2



  

 

5

These Are Generally Applicable Ideas

String name = getName( id0 );

String printStr = id0 + �: � + name;

name = getName( id1 );

printStr = id1 + �: � + name;

String name = getName( id0 );

String  printStr = id0 + �: � + name;

name = getName( id1 );

printStr = id1 + �: � + name;

6

Rewritten Code

String name0 = getName( id0 );

String printStr0 = id0 + �: � + name0;

String name1 = getName( id1 );

String printStr1 = id1 + �: � + name1;

String name0 = getName( id0 );

String printStr0 = id0 + �: � + name0;

String name1 = getName( id1 );

String printStr1 = id1 + �: � + name1;

� Can't get rid of flow dependences by renaming

� Renaming costs memory

� Loops tend to produce false dependences

� �Loop unrolling� does what that sounds like

� Unrolled loops can benefit from renaming

7

Pipelining and Dependences

� Structural hazards are structurally impossible

� WAW violation is structurally impossible

� WAR violation is structurally impossible

� RAW happens

� When �things go wrong� we stall

� Stalling throws away potential performance

� Why isn't there a hazard between MEM and IF?
jal skip

skip: sw $0, 4($ra)

lw $0, 5($ra)    # alignment exception?

EX
(read /

produce)

ID
(read)

IF
MEM
(read /

produce)

WB
(write)

8

Instruction Level Parallelism (ILP): Pipelining

� Pipelining is a form of ILP

� More than one instruction in flight at a time

� Respecting sequential semantics

� Have to worry about dependences between instructions

� The structure of pipelines makes WAR and WAW easy

� Pipelines are: 

EXIDIF MEM WB

in order issue in order execute in order commit



  

 

9

Pipelines: Going Faster

� How can we improve the performance of the 5-stage 
pipeline?

� We could try making the pipeline deeper � i.e., breaking 
individual stages up into multiple stages

� Ideally, a 10-stage pipeline should support a cycle time about double 
that of a 5-stage, but

» Hazards become more costly

» Flushes (e.g., mispredicted branches) become more expensive

� Diminishing returns...

� Additionally, some operations take a lot longer than others

� For example:

» Cache misses...

» floating point is slower than integer arithmetic

� How should we deal with that?

10

The MIPS pipeline with floating-point functional units.

IDIF WBMEM

Integer unit

EX

FP/Intege

r

divider

EX

FP 

adder

EX

EX
FP/Intege

r

multiply

Floating Point and the Pipeline

11

IF ID MEM WB

Integer unit

E

X

FP/integer multiply

FP adder

FP/integer divider

DIV

M

1

M

2

M

3

M

4

M

5

M

6

M

7

A1 A4A-3A2

Pipelining the FP Units

12

Pipelines: Going Wide

� We have two basic choices:

� Only one instruction may be in EX stage, no matter how long it takes it 
to get through there, or...

� Let's cram instructions into EX as fast as we can

� Which should we do?

� Reminder: We're trying to go fast...

� Putting multiple functional units in parallel is both a problem 
and an opportunity

� The Opportunity:

� Hey, this is great!  Why don't I just stuff a bunch of ALUs, some memory 
interfaces, some float units, etc. in there?

» More hardware � higher performance?

� In fact, why don't I issue more than one instruction per cycle?!!!

» �multi-issue�  NOT part of today's material, but not far from it�



  

 

13

Going Wide: The Problems

� In order execution leads to under-utilization of hardware

� Parallel execution � out of order execution / completion

� Time per stage is not a constant

» Structural hazards are possible

� FP divide takes many cycles, and is not pipelined

� May need to write more than one register in a cycle

� Out of order execution

» RAW dependences may be longer

» �Precise exceptions� are more difficult to implement

� Out of order completion

» WAR / WAW hazards are possible

14

Two Approaches Today

� Scoreboarding
� In order issue

� Out of order execution

� Out of order completion

� Tomasulo's Algorithm
� In order issue

� Out of order execution

� Out of order completion

� Register renaming to eliminate WAW and WAR dependences

� Modern processors
� Descendants of Tomasulo

� Add a �re-order buffer� to achieve in-order completion

» Enables precise interrupts

15

Scoreboarding

IF/ID

I-cache

Reg
Read

EX
Reg
Write

Reg
Read

EX
Reg
Write

Reg
Read

EX
Reg
Write

���

Structural: stall

WAW: stall

in order issue
RAW: stall WAR: stall

16

Scoreboarding

� Data path now has two largely decoupled pieces:

� IF fetches an instruction each cycle

» There is a small window (buffer) of already fetched instructions

» If issue stalls, the buffer fills

» When instructions complete, they leave the buffer

� Scoreboarding: 4-stage execution

» Issue � check structural /WAW hazards (stall until clear)

» Read ops � check RAW (wait till operands ready, read regs)

» Execute � execute operation. Notify scoreboard when done

» Write � check for WAR (stall write until clear)



  

 

18

Scoreboard Example Cycle 62
Instruct ion status Read Execut ionWrite

Instruct ion j k Issue operandscompleteResult

LD F6 34+ R2 1 2 3 4

LD F2 45+ R3 5 6 7 8

MULTDF0 F2 F4 6 9 19 20

SUBD F8 F6 F2 7 9 11 12

DIVD F10 F0 F6 8 21 61 62

ADDDF6 F8 F2 13 14 16 22

Funct ional unit  status dest S1 S2 FU for  j FU for  k Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No

Mult1 No

Mult2 No

Add No

0 Div ide No

Register  result  status

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
6 2 FU

19

Scoreboard Summary

� Speedup 1.7 from compiler; 2.5 by hand 

� BUT slow memory (no cache)

� Limitations of 6600 scoreboard

� No forwarding (First write register then read it)

� Limited to instructions in basic block 
(small window)

� Number of functional units(structural hazards)

� Wait for WAR hazards

� Prevent WAW hazards

20

Another Dynamic Algorithm: 
Tomasulo Algorithm

� For IBM 360/91 about 3 years after CDC 6600 (1966)

� Goal: High Performance without special compilers

� Differences between IBM 360 & CDC 6600 ISA

� IBM has only 2 register specifiers/instr vs. 3 in CDC 6600

� IBM has 4 FP registers vs. 8 in CDC 6600

� (x86 has 4 general purpose integer registers...)

� Led to Alpha 21264, HP 8000, MIPS 10000, Pentium II, 
PowerPC 604, �



  

 

21

Installation of the IBM 360/91 in the Columbia Computer Center 
machine room in February or March 1969

22

23

Tomasulo Organization

24

Tomasulo Algorithm vs. 
Scoreboard

� Control & buffers distributed with Function Units (FU) vs. centralized in 
scoreboard; 

� FU buffers called �reservation stations�; have pending operands

� Registers in instructions replaced by values or pointers to reservation 
stations(RS); called  register renaming ; 

� avoids WAR, WAW hazards

� More reservation stations than registers, so can do optimizations 
compilers can�t

� Results to FU from RS, not through registers, over Common Data Bus 
that broadcasts results to all FUs

� Load and Stores treated as FUs with RSs as well

� Integer instructions can go past branches, allowing 
FP ops beyond basic block in FP queue



  

 

25

Three Stages of Tomasulo Algorithm

1. Issue�get instruction from FP Op Queue

 If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execution�operate on operands (EX)

 When both operands ready then execute;
 if not ready, watch Common Data Bus for result

3. Write result�finish execution (WB)

 Write on Common Data Bus to all awaiting units; 
mark reservation station available

� Where's the register renaming?

� FU's may wait to hear a result produced by a particular other FU � that's a new 
name

� Reservation stations copy the operand values � that's new names

26

Tomasulo Example Cycle 57

Inst ruct ion status Execution Write

Inst ruct ion j k Issue complete Result Busy Addr ess

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTDF0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56 57

ADDDF6 F8 F2 6 10 11

Reserv ation St at ions S1 S2 RS for  j RS for k

Time Name Busy Op Vj Vk Qj Qk

0 Add1 No

0 Add2 No

Add3 No

0 Mult1 No

0 Mult2 No

Regist er result  st at us

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
5 7 FU M*F4 M(45+ R3) (M�M)+ M() M()�M() M*F4/M

� Again, in-order issue, 
out-of-order execution, completion

27

Tomasulo v. Scoreboard
(IBM 360/91 v. CDC 6600)

Pipelined Functional Units Multiple Functional Units

(6 load, 3 store, 3 +, 2 x/÷) (1 load/store, 1 + , 2 x, 1 ÷) 

window size:  14 instructions�   5 instructions �

No issue on structural hazard same

WAR: renaming avoids stall completion

WAW: renaming avoids stall completion

Broadcast results from FU Write/read registers

Control: reservation stations central scoreboard


