
1

1

Structure of Final

The final is comprehensive, but most coverage
is on material since midterm

Pipelining

 
Overall operation

 
Hazards

 
Interrupts/Exceptions

Caching

 
Overall operation and design space

VM/Paging

The “style” will be like the MT

2

Reading Summary

Chapter 1: Skim

Chapter 2: 2.1-2.8, 2.10; 2.12-2.14 Skim

Chapter 3: 3.5

Chapter 4: 4.1-4.4; 4.5-4.9

Chapter 5: 5.1-5.8

Chapter 6: 6.3, 6.5-6.6

[Some material on multicore from Ch. 7; not

responsible for any of it.]

2

3

Design of Pipelined MIPS

MIPS design:

 Know all components and their operation

 Know flow of logic -- which components are

active when implementing a given operation

 Be able to specify control signals needed to

accomplish specific instructions

 Be able to compare with 1-cycle, multi-cycle

 Know the issues in pipelined performance

•  Why is write back last for addi?

•  Why do we want to move branch decision logic earlier?

•  Give examples of problems from instructions being

started before preceding instructions are complete

4

Caching

Know the various forms of caching: direct

mapped, fully associative, k-way set
associative

Operation

Policies: wt, wb, wa, allocate on load, lru, etc.

Describe importance size of blocks,
associativity, size, etc. on performance

Know terms: index, tag, valid bit, dirty bit, etc.

3

5

VM/Paging

Explain why “the RAM is considered a fully

associative cache for the disk”

Full associativity in an L1 cache requires a

“parallel compare” of tags to find a line …
don’t pages also require it to find the page?

For 16K pages, how large is the virtual page no.?

Give advantages/disadvantages of large vs. small

page sizes

Why do we bother with a TLB?

What stuff goes into a TLB entry?

How is that TLBs are fully associative?

6

TLB

Explain why it’s called a “TLB”

4

7

Skills

In the pipelined datapath, show which wires are

active for forwarding for a given code frag?

In schematic diagram of pipelined instructions

show bubbles, stalls and forwarding

Compute a physical address given a virtual addr

Determine if an address is in a cache

Determine if an page is in memory

Decide, given CPI and other data, which of two

machines is faster

Revise assembly code to be hazard-free

8

-2

ID/EX.
RegisterRs

5

MEM/WB.RegisterRd

EX/MEM.RegisterRd

Clock 4: forwarding $2 from EX/MEM

Instruction
memory

Data
memory

1

0

PC

ALU Registers

13 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

6 (Rs)

0
1
2

0
1
2

Forwarding
Unit

2

EX: and $12, $2, $5 ID: or $13, $6, $2 IF: add $14, $2, $2

106

102

X

X

6

2

102

105

-2

104

105

0

 2

12 12

MEM: sub $2, $1, $3

-2

2

ID/EX.
RegisterRt

