
1

1

Structure of Final

The final is comprehensive, but most coverage
is on material since midterm
Pipelining
  Overall operation
  Hazards

  Interrupts/Exceptions

Caching
  Overall operation and design space

VM/Paging

The “style” will be like the MT

2

Reading Summary
Chapter 1: Skim
Chapter 2: 2.1-2.8, 2.10; 2.12-2.14 Skim
Chapter 3: 3.5
Chapter 4: 4.1-4.4; 4.5-4.9

Chapter 5: 5.1-5.8
Chapter 6: 6.3, 6.5-6.6
[Some material on multicore from Ch. 7; not

responsible for any of it.]

2

3

Design of Pipelined MIPS
MIPS design:

 Know all components and their operation
 Know flow of logic -- which components are

active when implementing a given operation
 Be able to specify control signals needed to

accomplish specific instructions
 Be able to compare with 1-cycle, multi-cycle
 Know the issues in pipelined performance

•  Why is write back last for addi?
•  Why do we want to move branch decision logic earlier?
•  Give examples of problems from instructions being

started before preceding instructions are complete

4

Caching
Know the various forms of caching: direct

mapped, fully associative, k-way set
associative
Operation
Policies: wt, wb, wa, allocate on load, lru, etc.

Describe importance size of blocks,
associativity, size, etc. on performance

Know terms: index, tag, valid bit, dirty bit, etc.

3

5

VM/Paging
Explain why “the RAM is considered a fully

associative cache for the disk”
Full associativity in an L1 cache requires a

“parallel compare” of tags to find a line …
don’t pages also require it to find the page?

For 16K pages, how large is the virtual page no.?
Give advantages/disadvantages of large vs. small

page sizes
Why do we bother with a TLB?
What stuff goes into a TLB entry?

How is that TLBs are fully associative?

6

TLB

Explain why it’s called a “TLB”

4

7

Skills
In the pipelined datapath, show which wires are

active for forwarding for a given code frag?
In schematic diagram of pipelined instructions

show bubbles, stalls and forwarding
Compute a physical address given a virtual addr
Determine if an address is in a cache

Determine if an page is in memory
Decide, given CPI and other data, which of two

machines is faster
Revise assembly code to be hazard-free

8

-2

ID/EX.
RegisterRs

5

MEM/WB.RegisterRd

EX/MEM.RegisterRd

Clock 4: forwarding $2 from EX/MEM

Instruction
memory

Data
memory

1

0

PC

ALU Registers

13 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

6 (Rs)

0
1
2

0
1
2

Forwarding
Unit

2

EX: and $12, $2, $5 ID: or $13, $6, $2 IF: add $14, $2, $2

106

102

X

X

6

2

102

105

-2

104

105

0

 2

12 12

MEM: sub $2, $1, $3

-2

2

ID/EX.
RegisterRt

