
1

Parallel Programming

The preferred parallel algorithm is generally
 different from the preferred sequential
 algorithm

•  Compilers cannot transform a sequential

 algorithm into a parallel one with adequate
 consistency

•  Legacy code must be rewritten to use ||ism

•  Your knowledge of sequential algorithms is not
 that useful for parallel programming

•  There is no silver bullet

1

Easy Cases: Data Parallelism

Iteration body for a given index is independent of all
 others … can be performed in parallel

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {
 C[i] = A[i] + B[i];
 }
}

The standard programming abstraction would be

 for_all i in [0..length-1]{C[i]=A[i]+ B[i];}

2

2

3

Is it always that easy?

Not always… a more challenging example:

unsigned

sum_array(unsigned *array, int length) {

 int total = 0;

 for (int i = 0 ; i < length ; ++ i) {

 total += array[i];

 }

 return total;

}

Is there parallelism here?

4

We first need to restructure the code

unsigned
sum_array2(unsigned *array, int length) {
 unsigned total, i;
 unsigned temp[4] = {0, 0, 0, 0};
 for (i = 0 ; i < length & ~0x3 ; i += 4) {
 temp[0] += array[i];
 temp[1] += array[i+1];
 temp[2] += array[i+2];
 temp[3] += array[i+3];
 }
 total = temp[0] + temp[1] + temp[2] + temp[3];
 return total;
}

3

5

Then generate SIMD code for hot part

unsigned
sum_array2(unsigned *array, int length) {
 unsigned total, i;
 unsigned temp[4] = {0, 0, 0, 0};
 for (i = 0 ; i < length & ~0x3 ; i += 4) {
 temp[0] += array[i];
 temp[1] += array[i+1];
 temp[2] += array[i+2];
 temp[3] += array[i+3];
 }
 total = temp[0] + temp[1] + temp[2] + temp[3];
 return total;
}

SIMD == Single Instruction, Multiple Data

6

Intel SSE/SSE2 as an example of SIMD

•  Added new 128 bit registers (XMM0 – XMM7), each can store

 4 single precision FP values (SSE)
4 * 32b

 2 double precision FP values (SSE2)
2 * 64b

 16 byte values (SSE2)

16 * 8b

 8 word values (SSE2)

8 * 16b

 4 double word values (SSE2)

4 * 32b

 1 128-bit integer value (SSE2)

1 * 128b

 4.0 (32 bits) 4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

 2.3 (32 bits) 1.7 (32 bits) 2.0 (32 bits) -1.5 (32 bits)

 0.3 (32 bits) 5.2 (32 bits) 6.0 (32 bits) 2.5 (32 bits)

SSE == X86 Streaming SIMD Extensions

+

4

Many Computations Have Dependences

Aggregate or Reduction Operations

unsigned

sum_array(unsigned *array, int length) {

 int total = 0;

 for (int i = 0 ; i < length ; ++ i) {

 total += array[i];

 }

 return total;

}

Standard abstraction is

 total = sum(array);
which allows ||-solution

7
2 4 6 8 10 16 14 16

10
26

52
66

36

68 76

Overcoming Sequential Control

Many computations on a data sequence seem to
 be “essentially sequential”

Prefix sum is an example: for n inputs, the ith

 output is the sum of the first i items

 Input: 2 1 5 3 7

 Output: 2 3 8 11 18

Given x1, x2, …, xn find y1, y2, …, yn s.t.

 yi = Σ j≤i xj

5

Sequential Computation

Consider computing the prefix sums

Semantics ...

 A[1] is unchanged

 A[2]
 = A[2] + A[1]

 A[3]
 = A[3] + (A[2] + A[1])

...

 A[n]
 = A[n] + (A[n-1] + (... (A[2] + A[1]) …)

for (i=1; i<n+1; i++) {
 A[i] += A[i-1];
}

A[i] is the sum of the
 first i elements

What advantage can ||ism give?

Illustrating The Semantics

The computation of the items can be described pictorially

The picture illustrates the dependences of the sequential code

Addition, of course, is associative

2 4 6 8 10 16 14 16
10

26

52
66

36

68 76

6

Restructuring the Computation

Express the computation as a tree

Dependence chain shallower -- faster

 Sequential: 7, Tree: 3

2 4 6 8 10 16 14 16

10 26 30 10

36 40

76

2 4 6 8 10 16 14 16
10

26

52
66

36

68 76

Restructuring the Computation

Express the computation as a tree

Dependence chain shallower -- faster

 Sequential: 7, Tree: 3

Operation count is unchanged: 7 each

2 4 6 8 10 16 14 16

10 26 30 10

36 40

76

2 4 6 8 10 16 14 16
10

26

52
66

36

68 76
+

+
+

+
+

+
+

+

+

+ +

+

+ +

7

Naïve Use of Parallelism

For any yi a height log i tree finds the prefix

 Much redundant computation

 Requires O(n2) parallelism for n prefixes

 It may be parallel but it is unrealistic

Naïve Use of Parallelism

For any yi a height log i tree finds the prefix

 Much redundant computation

 Requires O(n2) parallelism for n prefixes

Look closer at meaning of tree’s intermediate sums

2 4 6 8 10 16 14 16

10 26 30 10

36 40

76

2 4 6 8 10 16 14 16
10

26

52
66

36

68 76

root summarizes its leaves

8

Speeding Up Prefix Calculations

Putting the observations together

 One pass over the data computes global sum

 Intermediate values are saved

 A second pass over data uses intermediate sums
 to compute prefixes

 Each pass will be logarithmic for n = P

 Solution is called: The parallel prefix algorithm

10

4 6 16 10 16 14 2 8

26 30 10

36 40

76

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8

Compute sum going up

9

10

4 6 16 10 16 14 2 8

26 30 10

36 40

76

0

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8

Compute sum going up

Figure prefixes going down

Introduce a virtual
 parent, the sum of
 values to tree’s left: 0

10

4 6 16 10 16 14 2 8

26 30 10

36 40

76

0+36 0

0

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
 is sum of elements to
 left of subtree

10

10

4 6 16 10 16 14 2 8

26 30 10

36 40

76

0+36 0

0

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
 is sum of elements to
 left of subtree

0 36

10

4 6 16 10 16 14 2 8

26 30 10

36

0+10 0

40

36+30 36

76

0+36 0

0

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
 is sum of elements to
 left of subtree

0 36

11

10

0+6 0

4 4+6 6+0 6 16+10 16 10+26 10 16+36 16 14+52 14 2+66 2 8+68 8

26

10+16 10

30

36+16 36

10

66+2 66

36

0+10 0

40

36+30 36

76

0+36 0

0

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

Compute sum going up

Figure prefixes going down

Invariant: Parent data
 is sum of elements to
 left of subtree

10

0+6 0

4 4+6 6+0 6 16+10 16 10+26 10 16+36 16 14+52 14 2+66 2 8+68 8

26

10+16 10

30

36+16 36

10

66+2 66

36

0+10 0

40

36+30 36

76

0+36 0

0

Parallel Prefix Algorithm

6  4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

Each prefix is computed
 in 2log n time, if P = n

12

Fundamental Tool of || Pgmming

Original research on parallel prefix algorithm
 published by

R. E. Ladner and M. J. Fischer

Parallel Prefix Computation

Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm
 requires 2log n time, twice as
 much as simple tournament global
 sum, not linear time

Applies to a wide class of operations

Available || Prefix Operators

Most languages have reduce and scan (|| prefix)
 built-in for: +, *, min, max, &&, ||

A few languages allow users to define || prefix
 operations themselves

Parallel prefix is MUCH more useful

  Length of Longest Run of x
  Number of Occurrences of x

  Histogram
  Mode and Average
  Count Words

  Length of Longest Increasing Run
  Binary String Space Compression
  Run Length Encoding
  Balanced Parentheses
  Skyline

13

Summary

Sequential computation is a special case of
 parallel computation (P==1)

Generalizing from sequential computations
 usually arrives at the wrong solution …
 rethinking the problem to develop a parallel
 algorithm is the only real solution

It’s a good time to start acquiring parallel
 knowledge

25

