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Parallel Programming


The preferred parallel algorithm is generally
 different from the preferred sequential
 algorithm

•  Compilers cannot transform a  sequential

 algorithm into a parallel one with adequate
 consistency


•  Legacy code must be rewritten to use ||ism


•  Your knowledge of sequential algorithms is not
 that useful for parallel programming


•  There is no silver bullet 
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Easy Cases: Data Parallelism


Iteration body for a given index is independent of all
 others … can be performed in parallel


void 
array_add(int A[], int B[], int C[], int length) { 
  int i; 
  for (i = 0 ; i < length ; ++ i) { 
  C[i] = A[i] + B[i]; 
  } 
} 

The standard programming abstraction would be

 for_all i in [0..length-1]{C[i]=A[i]+ B[i];} 
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Is it always that easy?


Not always… a more challenging example:


unsigned  

sum_array(unsigned *array, int length) { 

  int total = 0; 

  for (int i = 0 ; i < length ; ++ i) { 

         total += array[i]; 

  } 

  return total; 

} 

Is there parallelism here?
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We first need to restructure the code


unsigned 
sum_array2(unsigned *array, int length) { 
  unsigned total, i; 
  unsigned temp[4] = {0, 0, 0, 0}; 
  for (i = 0 ; i < length & ~0x3 ; i += 4) { 
    temp[0] += array[i]; 
    temp[1] += array[i+1]; 
    temp[2] += array[i+2]; 
    temp[3] += array[i+3]; 
  } 
  total = temp[0] + temp[1] + temp[2] + temp[3]; 
  return total; 
} 
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Then generate SIMD code for hot part


unsigned 
sum_array2(unsigned *array, int length) { 
  unsigned total, i; 
  unsigned temp[4] = {0, 0, 0, 0}; 
  for (i = 0 ; i < length & ~0x3 ; i += 4) { 
    temp[0] += array[i]; 
    temp[1] += array[i+1]; 
    temp[2] += array[i+2]; 
    temp[3] += array[i+3]; 
  } 
  total = temp[0] + temp[1] + temp[2] + temp[3]; 
  return total; 
} 

SIMD == Single Instruction, Multiple Data 
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Intel SSE/SSE2 as an example of SIMD


•  Added new 128 bit registers (XMM0 – XMM7), each can store

 4 single precision FP values (SSE) 
4 * 32b

 2 double precision FP values (SSE2) 
2 * 64b

 16 byte values (SSE2) 
 
 
16 * 8b

 8 word values (SSE2) 
 
 
8 * 16b

 4 double word values (SSE2) 
 
4 * 32b

 1  128-bit integer value (SSE2) 
 
1 * 128b


  4.0  (32 bits)   4.0  (32 bits)   3.5  (32 bits)   -2.0  (32 bits) 

  2.3  (32 bits)   1.7  (32 bits)   2.0  (32 bits) -1.5 (32 bits) 

  0.3  (32 bits)   5.2  (32 bits)   6.0  (32 bits) 2.5 (32 bits) 

SSE == X86 Streaming SIMD Extensions 

+ 
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Many Computations Have Dependences


Aggregate or Reduction Operations

unsigned  

sum_array(unsigned *array, int length) { 

  int total = 0; 

  for (int i = 0 ; i < length ; ++ i) { 

         total += array[i]; 

  } 

  return total; 

} 

Standard abstraction is 


    total = sum(array); 
which allows ||-solution
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Overcoming Sequential Control


Many computations on a data sequence seem to
 be “essentially sequential”


Prefix sum is an example: for n inputs, the ith

 output is the sum of the first i items

 Input:    2    1    5    3    7


 Output: 2    3    8  11  18


Given x1, x2, …, xn find y1, y2, …, yn s.t.


  
 
 
  yi = Σ j≤i xj
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Sequential Computation


Consider computing the prefix sums


Semantics ... 

 A[1] is unchanged

 A[2] 
 = A[2] + A[1]

 A[3] 
 = A[3] + (A[2] + A[1])


 
 
...


 A[n] 
 = A[n] + (A[n-1] + ( ... (A[2] + A[1]) … )


for (i=1; i<n+1; i++) { 
   A[i] += A[i-1]; 
} 

A[i] is the sum of the
 first i elements  

What advantage can ||ism give?  

Illustrating The Semantics


The computation of the items can be described pictorially

The picture illustrates the dependences of the sequential code


Addition, of course, is associative
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Restructuring the Computation


Express the computation as a tree


Dependence chain shallower -- faster

 Sequential: 7, Tree: 3
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Restructuring the Computation


Express the computation as a tree


Dependence chain shallower -- faster

 Sequential: 7, Tree: 3


Operation count is unchanged: 7 each
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Naïve Use of Parallelism


For any yi a height log i tree finds the prefix

 Much redundant computation

 Requires O(n2) parallelism for n prefixes

 It may be parallel but it is unrealistic


Naïve Use of Parallelism


For any yi a height log i tree finds the prefix

 Much redundant computation

 Requires O(n2) parallelism for n prefixes


Look closer at meaning of tree’s intermediate sums
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Speeding Up Prefix Calculations


Putting the observations together

 One pass over the data computes global sum

 Intermediate values are saved


 A second pass over data uses intermediate sums
 to compute prefixes


 Each pass will be logarithmic for n = P

 Solution is called: The parallel prefix algorithm  
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  

Compute sum going up 
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10 

4 6 16 10 16 14 2 8 
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  

Compute sum going up 

Figure prefixes going down  

Introduce a virtual
 parent, the sum of
 values to tree’s left: 0 
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  

Compute sum going up 

Figure prefixes going down  

Invariant: Parent data
 is sum of elements to
 left of subtree  
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  

Compute sum going up 

Figure prefixes going down  

Invariant: Parent data
 is sum of elements to
 left of subtree  

0 36 
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  

Compute sum going up 

Figure prefixes going down  

Invariant: Parent data
 is sum of elements to
 left of subtree  

0 36 
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0+6 0 
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  
6         10             26         36             52         66           68         76 

Compute sum going up 

Figure prefixes going down  

Invariant: Parent data
 is sum of elements to
 left of subtree  
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0+6 0 

4 4+6 6+0 6 16+10 16 10+26 10 16+36 16 14+52 14 2+66 2 8+68 8 

26 
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30 
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Parallel Prefix Algorithm


6         4            16         10             16         14            2           8  
6         10             26         36             52         66           68         76 

Each prefix is computed
 in 2log n time, if P = n  
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Fundamental Tool of || Pgmming


Original research on parallel prefix algorithm
 published by



 
 
R. E. Ladner and M. J. Fischer


 
 
Parallel Prefix Computation


 
 
Journal of the ACM 27(4):831-838, 1980


The Ladner-Fischer algorithm
 requires 2log n time, twice as
 much as simple tournament global
 sum, not linear time 

Applies to a wide class of operations 

Available || Prefix Operators


Most languages have reduce and scan (|| prefix)
 built-in for: +, *, min, max, &&, || 

A few languages allow users to define || prefix
 operations themselves


Parallel prefix is MUCH more useful


  Length of Longest Run of x  
  Number of Occurrences of x 

  Histogram  
  Mode and Average 
  Count Words  

  Length of Longest Increasing Run  
  Binary String Space Compression  
  Run Length Encoding  
  Balanced Parentheses 
  Skyline 
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Summary



Sequential computation is a special case of
 parallel computation (P==1)


Generalizing from sequential computations
 usually arrives at the wrong solution …
 rethinking the problem to develop a parallel
 algorithm is the only real solution


It’s a good time to start acquiring parallel
 knowledge
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