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Together with Control Hazards …


In addition to solving the problem of branching within a 
pipeline, we must solve …


Interrupts: asynchronous event (e.g., I/O)

  Occurrence of an interrupt checked at every cycle

  If an interrupt has been raised, don’t fetch next instruction, 

drain the pipe, handle the interrupt 
 


Exceptions (e.g., arithmetic overflow, page fault etc.)


  Program and data dependent (repeatable), hence 
“synchronous”



 



2 

Exceptions


Occur “within” an instruction, for example:

 During IF: page fault

 During ID: illegal opcode

 During EX: division by 0 

 During MEM: page fault; protection violation


Handling exceptions

 A pipeline is restartable if the exception can be handled and 

the program restarted w/o affecting execution
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Precise exceptions

If exception at instruction i then 


  Instructions i-1, i-2 etc complete normally (drain the pipe)

  Instructions i+1, i+2 etc. already in the pipeline will be “no-

oped” and will be restarted from scratch after the exception 
has been handled
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Handling Precise Exceptions

Handling precise exceptions: Basic idea


 Force a trap instruction on the next IF (i.e., transfer of 
control to a known location in the O.S.)


 Turn off writes for all instructions i and following 

 When the target of the trap instruction receives control, it 

saves the PC of the instruction having the exception

 After the exception has been handled, an instruction “return 

from trap” will restore the PC
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Exception Handling


When an exception occurs

 Address (PC) of offending instruction saved in Exception 

Program Counter (a register not visible to ISA). 

•  In MIPS should save PC – 4


 Transfer control to OS


OS handling of the exception. Two methods

 Register the cause of the exception in a status register 

which is part of the state of the process 

 Transfer to a specific routine tailored for the cause of the 

exception; this is called vectored interrupts
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Exception Handling (continued)


OS saves the state of the process (registers etc.)

OS “clears” the exception


 Can decide to abort the program

 Can “correct” the exception

 Can perform useful functions (e.g. I/O interrupt, syscall etc.)


Return to the running process

 Restores state

 Restores PC




4 

7 

Precise exceptions (continued)


Relatively simple for integer pipeline

 All current machines have precise exceptions for 

integer and load-store operations


Can lead to loss of performance for pipes with 
multiple cycles execution stage


8 

Exception Support
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Exception Control
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Integer pipeline precise exceptions


Recall that exceptions can occur in all stages 
but WB


Exceptions must be treated in instruction order

 Instruction i starts at time t

 Exception in MEM stage at time t + 3 (treat it first)


 Instruction i + 1 starts at time t +1

 Exception in IF stage at time t + 1 (occurs earlier 

but treat it 2nd)
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Treating exceptions in order


Use pipeline registers

 Status vector of possible exceptions carried along 

with the instruction

 Once an exception is posted, no writing (no 

change of state; easy in integer pipeline -- just 
prevent store in memory)


 When an instruction leaves MEM stage, check for 
exception
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Difficulties in less RISCy environments


Due to instruction set (“long” instructions”)

 String instructions (but use of general registers to keep 

state)

  Instructions that change state before last stage (e.g., 

autoincrement mode in Vax and update addressing in Power 
PC) and these changes are needed to complete inst. 
(require ability to back up)


Condition codes (another way to handle branches)

 Must remember when last changed
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The average number of clock cycles per instruction, or 
CPI, is a function of the machine and program.

 The CPI depends on the actual instructions appearing in the 

program—a floating-point intensive application might have 
a higher CPI than an integer-based program


  It also depends on the CPU implementation. For example, a 
Pentium can execute the same instructions as an older 
80486, but faster


We often assume each instruction takes one cycle, so 
we assume CPI = 1.

 The CPI can be >1 due to memory stalls and slow 

instructions

 The CPI can be <1 on machines that execute more than 1 

instruction per cycle (superscalar)


CPI


14 

One “cycle” is the minimum time it takes the CPU to do 
any work.

 The clock cycle time or clock period is just the length of a 

cycle

 The clock rate, or frequency, is the reciprocal of the cycle 

time


Generally, a higher frequency is better.

Some examples illustrate some typical frequencies


 A 500MHz processor has a cycle time of 2ns.

 A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns 

(500ps)


Recall Clock Cycle Facts




8 

15 

CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX


The easiest way to remember this is match up units:


Make things faster by making any component smaller!!


Often easy to reduce one component by increasing 
another


Execution time, again


Seconds
 =
 Instructions
 *
 Clock cycles
 *
 Seconds


Program
 Program
 Instructions
 Clock cycle


Program
 Compiler
 ISA
 Organization
 Technology


Instruction


Executed

CPI


Clock Cycle 
TIme
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Let’s compare the performances two 8086-based 
processors.

 An 800MHz AMD Duron, w/ a CPI of 1.2 for MP3 compress

 A 1GHz Pentium III with a CPI of 1.5 for the same program


Compatible processors implement identical instruction 
sets and will use the same executable files, with the 
same number of instructions


But they implement the ISA differently, which leads to 
different CPIs


CPU timeAMD,P= InstructionsP * CPIAMD,P * Cycle timeAMD



 
        = 

CPU timeP3,P  = InstructionsP * CPIP3,P * Cycle timeP3



 
           = 


Example 1: ISA-compatible processors
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Example 2: Comparing across ISAs


Intel’s Itanium (IA-64) ISA is designed to 
facilitate executing multiple instructions per 
cycle.  If an Itanium processor achieves an 
average CPI of .3 (3 instructions per cycle), 
how much faster is it than a Pentium4 (which 
uses the x86 ISA) with an average CPI of 1?


a)  Itanium is three times faster

b)  Itanium is one third as fast

c)  Not enough information


18 

Improving CPI


Many processor design techniques improve CPI

 Often they only improve CPI for certain types of 

instructions


Fi = Fraction of instructions of type i


CPI  =    Σ CPI    ×  F          where   F    =          I     
 i  = 1 

 n 

i i i i 
Instruction Count 

   First Law of Performance: 

Make the common case fast 
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Example: CPI improvements

Base Machine:


How much faster would the machine be if:

 we added a cache to reduce average load time to 3 cycles?

 we added a branch predictor to reduce branch time by 1 

cycle?

 we could do two ALU operations in parallel?


Op Type
 Freq (fi)
 Cycles
 CPIi

ALU
 50%
 3

Load
 20%
 5

Store
 10%
 3

Branch
 20%
 2
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Amdahl’s Law states that optimizations are limited in 
their effectiveness.


For example, doubling the speed of floating-point 
operations sounds like a great idea. But if only 10% 
of the program execution time T involves floating-
point code, then the overall performance improves 
by just 5%.


What’s the max speedup from improving floating point?


Amdahl’s Law


Execution 
time after 

improvement


=
 Time affected by 
improvement


+
 Time unaffected 
by improvement


Amount of improvement


Execution 
time after 

improvement


=
 0.10 T
 +
0.90 T
 =
 0.95 T


2


   Second Law of Performance: 

Make the fast case common 
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Performance is one of the most important criteria in 
judging computer systems


There are two main measurements of performance

—  Execution time is what we focus on

—  Throughput is important for servers and operating systems


Our main performance equation explains how 
performance depends on several factors related to 
both hardware and software.


CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX


It can be hard to measure these factors in real life, but they are a 
useful guide for comparing systems designs


Amdahl’s Law tells us how much improvement we can expect from 
specific enhancements


The best benchmarks are real programs, which are more likely to 
reflect common instruction mixes


Summary



