
1

1

Together with Control Hazards …

In addition to solving the problem of branching within a
pipeline, we must solve …

Interrupts: asynchronous event (e.g., I/O)

  Occurrence of an interrupt checked at every cycle

  If an interrupt has been raised, don’t fetch next instruction,

drain the pipe, handle the interrupt

Exceptions (e.g., arithmetic overflow, page fault etc.)

  Program and data dependent (repeatable), hence
“synchronous”

2

Exceptions

Occur “within” an instruction, for example:

 During IF: page fault

 During ID: illegal opcode

 During EX: division by 0

 During MEM: page fault; protection violation

Handling exceptions

 A pipeline is restartable if the exception can be handled and

the program restarted w/o affecting execution

2

3

Precise exceptions

If exception at instruction i then

  Instructions i-1, i-2 etc complete normally (drain the pipe)

  Instructions i+1, i+2 etc. already in the pipeline will be “no-

oped” and will be restarted from scratch after the exception
has been handled

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle
 1 2 3 4 5 6 7

4

Handling Precise Exceptions

Handling precise exceptions: Basic idea

 Force a trap instruction on the next IF (i.e., transfer of
control to a known location in the O.S.)

 Turn off writes for all instructions i and following

 When the target of the trap instruction receives control, it

saves the PC of the instruction having the exception

 After the exception has been handled, an instruction “return

from trap” will restore the PC

3

5

Exception Handling

When an exception occurs

 Address (PC) of offending instruction saved in Exception

Program Counter (a register not visible to ISA).

•  In MIPS should save PC – 4

 Transfer control to OS

OS handling of the exception. Two methods

 Register the cause of the exception in a status register

which is part of the state of the process

 Transfer to a specific routine tailored for the cause of the

exception; this is called vectored interrupts

6

Exception Handling (continued)

OS saves the state of the process (registers etc.)

OS “clears” the exception

 Can decide to abort the program

 Can “correct” the exception

 Can perform useful functions (e.g. I/O interrupt, syscall etc.)

Return to the running process

 Restores state

 Restores PC

4

7

Precise exceptions (continued)

Relatively simple for integer pipeline

 All current machines have precise exceptions for

integer and load-store operations

Can lead to loss of performance for pipes with
multiple cycles execution stage

8

Exception Support

5

9

Exception Control

10

Integer pipeline precise exceptions

Recall that exceptions can occur in all stages
but WB

Exceptions must be treated in instruction order

 Instruction i starts at time t

 Exception in MEM stage at time t + 3 (treat it first)

 Instruction i + 1 starts at time t +1

 Exception in IF stage at time t + 1 (occurs earlier

but treat it 2nd)

6

11

Treating exceptions in order

Use pipeline registers

 Status vector of possible exceptions carried along

with the instruction

 Once an exception is posted, no writing (no

change of state; easy in integer pipeline -- just
prevent store in memory)

 When an instruction leaves MEM stage, check for
exception

12

Difficulties in less RISCy environments

Due to instruction set (“long” instructions”)

 String instructions (but use of general registers to keep

state)

  Instructions that change state before last stage (e.g.,

autoincrement mode in Vax and update addressing in Power
PC) and these changes are needed to complete inst.
(require ability to back up)

Condition codes (another way to handle branches)

 Must remember when last changed

7

13

The average number of clock cycles per instruction, or
CPI, is a function of the machine and program.

 The CPI depends on the actual instructions appearing in the

program—a floating-point intensive application might have
a higher CPI than an integer-based program

  It also depends on the CPU implementation. For example, a
Pentium can execute the same instructions as an older
80486, but faster

We often assume each instruction takes one cycle, so
we assume CPI = 1.

 The CPI can be >1 due to memory stalls and slow

instructions

 The CPI can be <1 on machines that execute more than 1

instruction per cycle (superscalar)

CPI

14

One “cycle” is the minimum time it takes the CPU to do
any work.

 The clock cycle time or clock period is just the length of a

cycle

 The clock rate, or frequency, is the reciprocal of the cycle

time

Generally, a higher frequency is better.

Some examples illustrate some typical frequencies

 A 500MHz processor has a cycle time of 2ns.

 A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns

(500ps)

Recall Clock Cycle Facts

8

15

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

The easiest way to remember this is match up units:

Make things faster by making any component smaller!!

Often easy to reduce one component by increasing
another

Execution time, again

Seconds
 =
 Instructions
 *
 Clock cycles
 *
 Seconds

Program
 Program
 Instructions
 Clock cycle

Program
 Compiler
 ISA
 Organization
 Technology

Instruction

Executed

CPI

Clock Cycle
TIme

16

Let’s compare the performances two 8086-based
processors.

 An 800MHz AMD Duron, w/ a CPI of 1.2 for MP3 compress

 A 1GHz Pentium III with a CPI of 1.5 for the same program

Compatible processors implement identical instruction
sets and will use the same executable files, with the
same number of instructions

But they implement the ISA differently, which leads to
different CPIs

CPU timeAMD,P= InstructionsP * CPIAMD,P * Cycle timeAMD

 =

CPU timeP3,P = InstructionsP * CPIP3,P * Cycle timeP3

 =

Example 1: ISA-compatible processors

9

17

Example 2: Comparing across ISAs

Intel’s Itanium (IA-64) ISA is designed to
facilitate executing multiple instructions per
cycle. If an Itanium processor achieves an
average CPI of .3 (3 instructions per cycle),
how much faster is it than a Pentium4 (which
uses the x86 ISA) with an average CPI of 1?

a)  Itanium is three times faster

b)  Itanium is one third as fast

c)  Not enough information

18

Improving CPI

Many processor design techniques improve CPI

 Often they only improve CPI for certain types of

instructions

Fi = Fraction of instructions of type i

CPI = Σ CPI × F where F = I
 i = 1

 n

i i i i
Instruction Count

  First Law of Performance:

Make the common case fast

10

19

Example: CPI improvements

Base Machine:

How much faster would the machine be if:

 we added a cache to reduce average load time to 3 cycles?

 we added a branch predictor to reduce branch time by 1

cycle?

 we could do two ALU operations in parallel?

Op Type
 Freq (fi)
 Cycles
 CPIi

ALU
 50%
 3

Load
 20%
 5

Store
 10%
 3

Branch
 20%
 2

20

Amdahl’s Law states that optimizations are limited in
their effectiveness.

For example, doubling the speed of floating-point
operations sounds like a great idea. But if only 10%
of the program execution time T involves floating-
point code, then the overall performance improves
by just 5%.

What’s the max speedup from improving floating point?

Amdahl’s Law

Execution
time after

improvement

=
 Time affected by
improvement

+
 Time unaffected
by improvement

Amount of improvement

Execution
time after

improvement

=
 0.10 T
 +
0.90 T
 =
 0.95 T

2

  Second Law of Performance:

Make the fast case common

11

21

Performance is one of the most important criteria in
judging computer systems

There are two main measurements of performance

—  Execution time is what we focus on

—  Throughput is important for servers and operating systems

Our main performance equation explains how
performance depends on several factors related to
both hardware and software.

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

It can be hard to measure these factors in real life, but they are a
useful guide for comparing systems designs

Amdahl’s Law tells us how much improvement we can expect from
specific enhancements

The best benchmarks are real programs, which are more likely to
reflect common instruction mixes

Summary

