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Together with Control Hazards …

In addition to solving the problem of branching within a 
pipeline, we must solve …

Interrupts: asynchronous event (e.g., I/O)
  Occurrence of an interrupt checked at every cycle
  If an interrupt has been raised, don’t fetch next instruction, 

drain the pipe, handle the interrupt  
Exceptions (e.g., arithmetic overflow, page fault etc.)

  Program and data dependent (repeatable), hence 
“synchronous”
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Exceptions

Occur “within” an instruction, for example:
 During IF: page fault
 During ID: illegal opcode
 During EX: division by 0 
 During MEM: page fault; protection violation

Handling exceptions
 A pipeline is restartable if the exception can be handled and 

the program restarted w/o affecting execution
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Precise exceptions
If exception at instruction i then 

  Instructions i-1, i-2 etc complete normally (drain the pipe)
  Instructions i+1, i+2 etc. already in the pipeline will be “no-

oped” and will be restarted from scratch after the exception 
has been handled
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Handling Precise Exceptions
Handling precise exceptions: Basic idea

 Force a trap instruction on the next IF (i.e., transfer of 
control to a known location in the O.S.)

 Turn off writes for all instructions i and following 
 When the target of the trap instruction receives control, it 

saves the PC of the instruction having the exception
 After the exception has been handled, an instruction “return 

from trap” will restore the PC
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Exception Handling

When an exception occurs
 Address (PC) of offending instruction saved in Exception 

Program Counter (a register not visible to ISA). 
•  In MIPS should save PC – 4

 Transfer control to OS

OS handling of the exception. Two methods
 Register the cause of the exception in a status register 

which is part of the state of the process 
 Transfer to a specific routine tailored for the cause of the 

exception; this is called vectored interrupts
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Exception Handling (continued)

OS saves the state of the process (registers etc.)
OS “clears” the exception

 Can decide to abort the program
 Can “correct” the exception
 Can perform useful functions (e.g. I/O interrupt, syscall etc.)

Return to the running process
 Restores state
 Restores PC
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Precise exceptions (continued)

Relatively simple for integer pipeline
 All current machines have precise exceptions for 

integer and load-store operations

Can lead to loss of performance for pipes with 
multiple cycles execution stage
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Exception Support
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Exception Control
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Integer pipeline precise exceptions

Recall that exceptions can occur in all stages 
but WB

Exceptions must be treated in instruction order
 Instruction i starts at time t
 Exception in MEM stage at time t + 3 (treat it first)

 Instruction i + 1 starts at time t +1
 Exception in IF stage at time t + 1 (occurs earlier 

but treat it 2nd)
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Treating exceptions in order

Use pipeline registers
 Status vector of possible exceptions carried along 

with the instruction
 Once an exception is posted, no writing (no 

change of state; easy in integer pipeline -- just 
prevent store in memory)

 When an instruction leaves MEM stage, check for 
exception
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Difficulties in less RISCy environments

Due to instruction set (“long” instructions”)
 String instructions (but use of general registers to keep 

state)
  Instructions that change state before last stage (e.g., 

autoincrement mode in Vax and update addressing in Power 
PC) and these changes are needed to complete inst. 
(require ability to back up)

Condition codes (another way to handle branches)
 Must remember when last changed
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The average number of clock cycles per instruction, or 
CPI, is a function of the machine and program.
 The CPI depends on the actual instructions appearing in the 

program—a floating-point intensive application might have 
a higher CPI than an integer-based program

  It also depends on the CPU implementation. For example, a 
Pentium can execute the same instructions as an older 
80486, but faster

We often assume each instruction takes one cycle, so 
we assume CPI = 1.
 The CPI can be >1 due to memory stalls and slow 

instructions
 The CPI can be <1 on machines that execute more than 1 

instruction per cycle (superscalar)

CPI
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One “cycle” is the minimum time it takes the CPU to do 
any work.
 The clock cycle time or clock period is just the length of a 

cycle
 The clock rate, or frequency, is the reciprocal of the cycle 

time

Generally, a higher frequency is better.
Some examples illustrate some typical frequencies

 A 500MHz processor has a cycle time of 2ns.
 A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns 

(500ps)

Recall Clock Cycle Facts
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CPU timeX,P  =  Instructions executedP * CPIX,P * Clock cycle timeX

The easiest way to remember this is match up units:

Make things faster by making any component smaller!!

Often easy to reduce one component by increasing 
another

Execution time, again

Seconds = Instructions * Clock cycles * Seconds

Program Program Instructions Clock cycle

Program Compiler ISA Organization Technology

Instruction

Executed
CPI

Clock Cycle 
TIme
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Let’s compare the performances two 8086-based 
processors.
 An 800MHz AMD Duron, w/ a CPI of 1.2 for MP3 compress
 A 1GHz Pentium III with a CPI of 1.5 for the same program

Compatible processors implement identical instruction 
sets and will use the same executable files, with the 
same number of instructions

But they implement the ISA differently, which leads to 
different CPIs

CPU timeAMD,P= InstructionsP * CPIAMD,P * Cycle timeAMD

         = 
CPU timeP3,P  = InstructionsP * CPIP3,P * Cycle timeP3

            = 

Example 1: ISA-compatible processors
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Example 2: Comparing across ISAs

Intel’s Itanium (IA-64) ISA is designed to 
facilitate executing multiple instructions per 
cycle.  If an Itanium processor achieves an 
average CPI of .3 (3 instructions per cycle), 
how much faster is it than a Pentium4 (which 
uses the x86 ISA) with an average CPI of 1?

a)  Itanium is three times faster
b)  Itanium is one third as fast
c)  Not enough information
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Improving CPI

Many processor design techniques improve CPI
 Often they only improve CPI for certain types of 

instructions

Fi = Fraction of instructions of type i

CPI  =    Σ CPI    ×  F          where   F    =          I     
 i  = 1 

 n 

i i i i 
Instruction Count 

   First Law of Performance: 

Make the common case fast 



10 

19 

Example: CPI improvements
Base Machine:

How much faster would the machine be if:
 we added a cache to reduce average load time to 3 cycles?
 we added a branch predictor to reduce branch time by 1 

cycle?
 we could do two ALU operations in parallel?

Op Type Freq (fi) Cycles CPIi
ALU 50% 3
Load 20% 5
Store 10% 3
Branch 20% 2
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Amdahl’s Law states that optimizations are limited in 
their effectiveness.

For example, doubling the speed of floating-point 
operations sounds like a great idea. But if only 10% 
of the program execution time T involves floating-
point code, then the overall performance improves 
by just 5%.

What’s the max speedup from improving floating point?

Amdahl’s Law

Execution 
time after 

improvement

= Time affected by 
improvement

+ Time unaffected 
by improvement

Amount of improvement

Execution 
time after 

improvement

= 0.10 T +0.90 T = 0.95 T

2

   Second Law of Performance: 

Make the fast case common 
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Performance is one of the most important criteria in 
judging computer systems

There are two main measurements of performance
—  Execution time is what we focus on
—  Throughput is important for servers and operating systems

Our main performance equation explains how 
performance depends on several factors related to 
both hardware and software.

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

It can be hard to measure these factors in real life, but they are a 
useful guide for comparing systems designs

Amdahl’s Law tells us how much improvement we can expect from 
specific enhancements

The best benchmarks are real programs, which are more likely to 
reflect common instruction mixes

Summary


