
1

1

Virtual address translation (cont.)

1

Virtual page number Offset

Offset Physical frame
 number

Page table

With 4KB pages how many page table entries
(PTEs) will there be with 32 bit virtual
addresses?

2

Paging system summary (so far)

Addresses generated by the CPU are virtual addresses

In order to access the memory hierarchy, addresses

must be translated into physical addresses

That translation is done on a program per program

basis. Each program must have its own page table

All of the addresses you use in assembly programming

are virtual addresses

The virtual address of program A and the same virtual

address in program B will, in general, map to two
different physical addresses

2

3

Virtual to Physical Mapping Practice

To illustrate we assume:

32 bit virtual addresses

4K pages (frames)

1 wd PTEs

abc
Offset Virtual page number

Base Address: 0x0004c000

Page Table

0x12021 1 1 urw
0x12022 1 0 ur

1 0 urw
0x53d1c 1 0 ur
0x53d1d 1 1 urw
0x12020 1 0 ur

0
0x53d1e 1 0 ur

0x530c0

0x3

0x0004c014
0x0004c010
0x0004c00c

0x0004c020
0x0004c01c
0x0004c018

0x0004c028
0x0004c024

…

4

Memory Reference From Page Table

Go indirect to the address

0x12021 1 1 urw
0x12022 1 0 ur

1 0 urw
0x53d1c 1 0 ur
0x53d1d 1 1 urw
0x12020 1 0 ur

0
0x53d1e 1 0 ur

Page 4

Page 5

Page 6
Page 7

Page 0

Page 3

Page a

Page 8

Offset
abc

0x0004c014 0x530c0

0x?????

0x530c0000

0x12020000
0x12021000
0x12022000

0x53d1c000
0x53d1d000
0x53d1e000

0x0004c010
0x0004c00c

0x0004c020
0x0004c01c
0x0004c018

0x0004c028
0x0004c024

3

5

Page size choices

Small pages (e.g., 512 bytes in the Vax)

 Pros: takes less time to fetch from disk but as we’ll see

fetching a page of size 2x takes less than twice the time of
fetching a page of size x; better utilization of pages (less
fragmentation)

 Con: page tables are large but one can use multilevel pages

Large pages. Pros and cons converse from small pages

Current trends

 Page size 4 KB or 8KB.

 Possibility of two pages sizes, one normal (4KB) and one

very large, e.g. 256KB for applications such as graphics.

6

Page faults

When a virtual address has no corresponding physical

address mapping (valid bit is off in the PTE) we have
a page fault

On a page fault (a page fault is an exception)

  the faulting page must be fetched from disk (takes

milliseconds)

  the whole page (e.g., 4 or 8KB) must be fetched into RAM

(amortize the cost of disk access)

 because the program is going to be idle during that page

fetch, the CPU better be used by another program. On a
page fault, the state of the faulting program is saved and the
O.S. takes over. This is context-switching

4

7

Top level answers for paging systems

When do we bring a page in main memory?

 When there is a page fault for that page, i.e., on demand

Where do we put it in RAM?

 No restriction; mapping is fully-associative

How do we know it’s there?

 The corresponding PTE entry has its valid bit on

What happens if main memory is full

 We have to replace one of the virtual pages currently

mapped. Replacement algorithms can be sophisticated (cf.
CSE 451) since we have a context-switch and hence plenty
of time

8

Translation Buffers (TLBs)

The real problem with Paging and VM systems:

Virtual address translation requires a memory reference!

P_addr = MEM[V_addr[31:12]<<2 + Pg_Tab_Base] + V_addr[11:0]

To perform virtual to physical address translation we need
to look-up a page table entry

Since the page table is in memory, need to access memory

 Much too time consuming; 50 cycles or more per memory

reference

Solution: cache the translations

For that purpose special caches named translation buffers

are part of the memory system

 Also named Translation Lookaside Buffers (TLBs)

5

9

TLB organization

TLB organized as caches

For each entry in the TLB we’ll have

 a tag to check that it is the right entry

 data which instead of being the contents of memory

locations, like in a cache, will be a page table entry (PTE)

TLB’s are smaller than memory caches

 32 to 128 entries

  from fully associative to direct-mapped

  there can be an instruction TLB, a data TLB and also

distinct TLB’s for user and system address spaces

10

TLB organization

Offset Virtual page number

Index tag

Physical frame number

v d prot

Copy of PTE

6

11

Virtual addr to memory addr

ALU

Virtual address

TLB

Physical address

hit

cache

Main
 memory

miss

hit

miss

12

Address translation

At each memory reference the hardware searches the

TLB for the translation

 TLB hit and valid PTE the physical address is passed to the

cache

 TLB miss, either hardware or software (depends on

implementation) searches page table in memory

•  If PTE is valid, contents of the PTE loaded in the TLB and back

to step above

In hardware the TLB miss takes 10-100 cycles

In software takes up to 100 -1000 cycles

In either case, no context-switch

 Context-switch takes more cycles than a TLB miss

If PTE is invalid, we have a page fault (even on a TLB hit)

7

13

Caching Translations

Virtual to Physical translations are cached in a

Translation Lookaside Buffer (TLB)

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

14

TLB Management

TLBs are caches

  If small (e.g. 32 entries), can be fully associative

 Current trend: larger (about 128 entries); separate TLB’s for

instruction and data; Some part of the TLB reserved for
system

 TLBs are write-back. The only thing that can change is dirty
bit + any other information needed for page replacement
algorithm (cf. CSE 451)

8

15

TLB management (continued)

At context-switch, the virtual page translations
in the TLB are not valid for the new task

 Invalidate the TLB (set all valid bits to 0)

 Or append a Process ID (PID) number to the tag in
the TLB. When a new process takes over, the
O.S. creates a new PID.

 PID are recycled and entries corresponding to
“old PID” are invalidated.

PID

16

Include Program ID with Tag

Offset Virtual page number

Index tag

Physical frame number

v d prot

Copy of PTE

PID PID Reg:

Both the tag and PID
 must match for a hit

9

17

Paging systems: HW/SW interactions

Page tables

 Managed by the O.S.

 Address of the start of the page table for a given process is

found in a special register which is part of the state of the
process

 The O.S. has its own page table

 The O.S. knows where the pages are stored on disk

Page fault

 When a program attempts to access a location which is part

of a page that is not in main memory, we have a page fault

18

Page fault detection (simplified)

Page fault is an exception

Detected by the hardware (invalid bit in PTE either in

TLB or page table)

To resolve a page fault takes millions of cycles (disk I/O)

 The program that has a page fault must be interrupted

A page fault occurs in the middle of an instruction

  In order to restart the program later, the state of the program

must be saved and instructions must be restartable (precise
exceptions)

State consists of all registers, including PC and special
registers (such as the one giving the start of the page
table address)

10

19

Page fault handler (simplified)

Page fault exceptions are cleared by an O.S. routine

called the page fault handler which will

 Grab a physical frame from a free list maintained by the O.S.

or choose a frame to free (if needed), i.e., run a replacement
algorithm

  If the replaced frame is dirty, initiate a write of that frame to
disk

 Find out where the faulting page resides on disk – often the
PTE is used as a quick link

  Initiate a read for that page

 Context-switch, i.e., give the CPU to a task ready to proceed

20

Completion of page fault

When the faulting page has been read from
disk (a few ms later)

 The disk controller will raise an interrupt (another

form of exception)

 The O.S. will take over (context-switch) and

modify the PTE (in particular, make it valid)

 The program that had the page fault is put on the

queue of tasks ready to be run

 Context-switch to the program that was running

before the interrupt occurred

11

12/3/09 21

Two extremes in memory hierarchy

PARAMETER L1 PAGING SYSTEM

block (page) size 16-64 bytes 4K-8K (also 64K)

miss (fault) time 10-100 cycles
(20-1000 ns)

Millions of cycles
(3-20 ms)

miss (fault) rate 1-10% 0.00001-0.001%

memory size 4K-64K Bytes
(impl. depend.)

Gigabytes
(depends on ISA)

12/3/09 22

Other extreme differences

Mapping: Restricted (L1) vs. General (Paging)

 Hardware assist for virtual address translation (TLB)

Miss handler

 Hardware only for caches

 Software only for paging system (context-switch)

 Hardware and/or software for TLB

Replacement algorithm

 Not that important for caches

 Very important for paging system

Write policy

 Always write back for paging systems

