
1

1

Comparing cache organizations

Like many architectural features, caches are evaluated

experimentally

 As always, performance depends on the actual instruction

mix, since different programs will have different memory
access patterns

 Simulating or executing real applications is the most
accurate way to measure performance characteristics

The graphs on the next few slides illustrate the
simulated miss rates for several different cache
designs

 Again lower miss rates are generally better, but remember

that the miss rate is just one component of average memory
access time and execution time

2

Associativity tradeoffs and miss rates

Earlier we saw, higher associativity ==> more complex

HW

But a highly-associative cache will have a lower miss

rate

 Each set has more blocks, so there’s less chance of a

conflict between two addresses

 Overall, this will reduce AMAT and memory stall cycles

0%

3%

6%

9%

12%

Eight-way Four-way Two-way One-way

M
is

s
ra

te

Associativity

2

3

Cache size and miss rates

Cache size also has a significant impact on performance

  In a larger cache there’s less chance there will be of a conflict

 Again this means the miss rate decreases, so the AMAT and

number of memory stall cycles also decrease

The complete Figure 5.30 depicts the miss rate as a
function of both the cache size and its associativity

0%

3%

6%

9%

12%

15%

Eight-way Four-way Two-way One-way

1 KB
2 KB
4 KB
8 KB

M
is

s
ra

te

Associativity

4

Block size and miss rates

Finally, the figure below shows miss rates

relative to block size and overall cache size

 Smaller blocks do not take maximum advantage

of spatial locality

 But if blocks are too large, there are fewer blocks

available, and more potential conflicts misses

1 KB
8 KB

16 KB
64 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64 16 4

Block size (bytes)

3

5

Review of Fields of Address

Address:

Size Determined By:

 Byte Offset: always 2 bits ‘cause we work w/words

 Block Offset: 2k words in block require k bits

 Index: 2m cache entries require m bits

 Tag: address_size - m – k-2

Tag Index
Block Offset
Byte Offset

address_size - m – k - 2 m k 2

6

Memory and overall performance

How do cache hits/misses affect system performance?

  Assuming a hit time of one CPU clock cycle, program execution will
continue normally on a cache hit.

  For cache misses, assume the CPU stalls to load from main memory.

The total number of stall cycles depends on the number of cache
misses and the miss penalty

Memory stall cycles = Memory accesses x miss rate x miss penalty

To include stalls due to cache misses in CPU performance equations,
we have to add them to the “base” number of execution cycles.

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

4

7

Performance example

Assume that 33% of the instructions in a program are data

accesses. The cache hit ratio is 97% and the hit time is one
cycle, but the miss penalty is 20 cycles.

Memory stall cycles= Memory accesses x Miss rate x Miss penalty

 = 0.33 I x 0.03 x 20 cycles

 = 0.2 I cycles

If I instructions are executed, then the number of wasted cycles
will be 0.2 x I

This code is 1.2 times slower than a program with a “perfect” CPI
of 1!

8

Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

Processor performance traditionally outpaces memory performance,
so the memory system is often the bottleneck

EG, with a base CPI of 1, CPU time from the last page is:

CPU time = (I + 0.2 I) x Cycle time

What if we could double the CPU performance so the CPI becomes
0.5, but memory performance remained the same?

CPU time = (0.5 I + 0.2 I) x Cycle time

The overall CPU time improves by just 1.2/0.7 = 1.7 times!

  Speeding up only part of a system has diminishing returns

5

9

Basic main memory design

There are some ways to organize main memory to reduce miss

penalties and help with caching

Let’s assume the following

3 steps are taken when a cache needs to load data

from the main memory:

1.  It takes 1 cycle to send an address to the RAM

2.  There is a 15-cycle latency for each RAM access

3.  It takes 1 cycle to return data from the RAM

In this setup, buses are all one word wide

If the cache has 1 wd blocks, then filling a block from RAM (i.e.,

the miss penalty) would take 17 cycles

1 + 15 + 1 = 17 clock cycles

  The cache controller sends the address to RAM, waits and
receives the data.

Main
Memory

Cache

CPU

10

Miss penalties for larger cache blocks

If the cache has four-word blocks, then loading a single

block would need four individual main memory
accesses, and a miss penalty of 68 cycles!

4 x (1 + 15 + 1) = 68 clock cycles

Main
Memory

CPU

Cache

6

11

A wider memory

One way to decrease the miss

penalty is to widen the memory
and its interface to the cache, so
multiple words are read from RAM
in one shot

Reading 4 words from memory at
once needs just 17 cycles

1 + 15 + 1 = 17 cycles

The disadvantage is the cost of the
wider buses—each additional bit
of memory width requires another
connection to the cache

Main
Memory

Cache

CPU

12

An interleaved memory

Another approach is to interleave the

memory, or splitting it into “banks”
accessible individually

The main benefit is overlapping the
latencies of accessing each word

Eg, if main memory has 4 banks, each 1
word wide, then we can load 4 words
in just 20 cycles

1 + 15 + (4 x 1) = 20 cycles

Buses are still 1 word wide, so 4 cycles
are needed to x-fer data

This is cheaper than implementing a 4
bus, but not too much slower

Main Memory

CPU

Bank 0 Bank 1 Bank 2 Bank 3

Cache

7

13

Here is a diagram to show how the memory accesses can be
interleaved

  The magenta cycles represent sending an address to a memory

bank

  Each memory bank has a 15-cycle latency, and it takes another

cycle (shown in blue) to return data from the memory

This is the same basic idea as pipelining!

  As soon as we request data from one memory bank, we can

request data from another bank as well …

  Each individual load takes 17 clock cycles, but four overlapped

loads require just 20 cycles

Interleaved memory accesses

Load word 1
Load word 2
Load word 3
Load word 4

Clock cycles
15 cycles

14

Which is better?

Increasing block size can improve hit rate (due to spatial locality),

but transfer time increases. Which cache configuration would
be better?

Assume both caches have single cycle hit times. Memory
accesses take 15 cycles, and the memory bus is 8-bytes wide:

  i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Cache #1
 Cache #2

Block size
 32-bytes
 64-bytes

Miss rate
 5%
 4%

8

15

Writing Cache Friendly Code

Two major rules:

Repeated references to data are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Example: cold cache, 4-byte words, 4-word cache blocks

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%

Adapted from Randy Bryant

16

Which is better?

Increasing block size can improve hit rate (due to spatial locality),

but transfer time increases. Which cache configuration would
be better?

Assume both caches have single cycle hit times Memory
accesses take 15 cycles, and the memory bus is 8-bytes wide:

  i.e., a 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

Cache #1
 Cache #2

Block size
 32-bytes
 64-bytes

Miss rate
 5%
 4%

Cache #1:
Miss Penalty = 1 + 15 + 32B/8B

 = 20 cycles
AMAT = 1 + (.05 * 20) = 2

Cache #2:
Miss Penalty = 1 + 15 + 64B/8B

 = 24 cycles
AMAT = 1 + (.04 * 24) = ~1.96

9

17

Caching Data Transfer Summary

Writing to a cache poses a couple of interesting issues

—  Write-through and write-back policies keep the cache
consistent with main memory in different ways for write hits

—  Write-around and allocate-on-write are two strategies to
handle write misses, differing in whether updated data is
loaded into the cache

Memory system performance depends upon the cache
hit time, miss rate and miss penalty, as well as the
actual program being executed

 We can use these numbers to find the average memory

access time

 We can also revise our CPU time formula to include stall

cycles.

AMAT = Hit time + (Miss rate x Miss penalty)

18

Summary (continued)

Memory stall cycles = Memory accesses x miss rate x miss
penalty

CPU time = (CPU execution cycles + Memory stall cycles) x
Cycle time

The organization of a memory system affects its
performance

 The cache size, block size, and associativity affect the miss

rate

 We can organize the main memory to help reduce miss

penalties. For example, interleaved memory supports
pipelined data accesses

