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Comparing cache organizations

Like many architectural features, caches are evaluated 

experimentally

 As always, performance depends on the actual instruction 

mix, since different programs will have different memory 
access patterns


 Simulating or executing real applications is the most 
accurate way to measure performance characteristics


The graphs on the next few slides illustrate the 
simulated miss rates for several different cache 
designs

 Again lower miss rates are generally better, but remember 

that the miss rate is just one component of average memory 
access time and execution time
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Associativity tradeoffs and miss rates

Earlier we saw, higher associativity ==> more complex 

HW

But a highly-associative cache will have a lower miss 

rate

 Each set has more blocks, so there’s less chance of a 

conflict between two addresses

 Overall, this will reduce AMAT and memory stall cycles
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Cache size and miss rates

Cache size also has a significant impact on performance


  In a larger cache there’s less chance there will be of a conflict

 Again this means the miss rate decreases, so the AMAT and 

number of memory stall cycles also decrease


The complete Figure 5.30 depicts the miss rate as a 
function of both the cache size and its associativity
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Block size and miss rates

Finally, the figure below shows miss rates 

relative to block size and overall cache size

 Smaller blocks do not take maximum advantage 

of spatial locality

 But if blocks are too large, there are fewer blocks 

available, and more potential conflicts misses
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Review of Fields of Address


Address:


Size Determined By:

 Byte Offset: always 2 bits ‘cause we work w/words

 Block Offset: 2k words in block require k bits

 Index: 2m cache entries require m bits

 Tag: address_size - m – k-2


Tag Index 
Block Offset 
Byte Offset 

address_size - m – k - 2                m                      k   2 
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Memory and overall performance

How do cache hits/misses affect system performance?


  Assuming a hit time of one CPU clock cycle, program execution will 
continue normally on a cache hit. 


  For cache misses, assume the CPU stalls to load from main memory.


The total number of stall cycles depends on the number of cache 
misses and the miss penalty


Memory stall cycles = Memory accesses x miss rate x miss penalty


To include stalls due to cache misses in CPU performance equations, 
we have to add them to the “base” number of execution cycles.


CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time
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Performance example

Assume that 33% of the instructions in a program are data 

accesses. The cache hit ratio is 97% and the hit time is one 
cycle, but the miss penalty is 20 cycles.


Memory stall cycles= Memory accesses x Miss rate x Miss penalty


 
 
     = 0.33 I x 0.03 x 20 cycles


 
 
     = 0.2 I cycles


If I instructions are executed, then the number of wasted cycles 
will be 0.2 x I


This code is 1.2 times slower than a program with a “perfect” CPI 
of 1!
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Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time


Processor performance traditionally outpaces memory performance, 
so the memory system is often the bottleneck


EG, with a base CPI of 1, CPU time from the last page is:


CPU time = (I + 0.2 I) x Cycle time


What if we could double the CPU performance so the CPI becomes 
0.5, but memory performance remained the same?


CPU time = (0.5 I + 0.2 I) x Cycle time


The overall CPU time improves by just 1.2/0.7 = 1.7 times!

  Speeding up only part of a system has diminishing returns
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Basic main memory design

There are some ways to organize main memory to reduce miss 

penalties and help with caching

Let’s assume the following



3 steps are taken when a cache needs to load data


from the main memory:


1.  It takes 1 cycle to send an address to the RAM

2.  There is a 15-cycle latency for each RAM access

3.  It takes 1 cycle to return data from the RAM


In this setup, buses are all one word wide

If the cache has 1 wd blocks, then filling a block from RAM (i.e., 

the miss penalty) would take 17 cycles



 
1 + 15 + 1 = 17 clock cycles


  The cache controller sends the address to RAM, waits and 
receives the data.
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Miss penalties for larger cache blocks

If the cache has four-word blocks, then loading a single 

block would need four individual main memory 
accesses, and a miss penalty of 68 cycles!


4 x (1 + 15 + 1) = 68 clock cycles


Main  
Memory  

CPU 

Cache  
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A wider memory

One way to decrease the miss 

penalty is to widen the memory 
and its interface to the cache, so 
multiple words are read from RAM 
in one shot


Reading 4 words from memory at 
once needs just 17 cycles


1 + 15 + 1 = 17 cycles


The disadvantage is the cost of the 
wider buses—each additional bit 
of memory width requires another 
connection to the cache
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An interleaved memory

Another approach is to interleave the 

memory, or splitting it into “banks” 
accessible individually


The main benefit is overlapping the 
latencies of accessing each word


Eg, if main memory has 4 banks, each 1 
word wide, then we can load 4 words 
in just 20 cycles


1 + 15 + (4 x 1) = 20 cycles


Buses are still 1 word wide, so 4 cycles 
are needed to x-fer data


This is cheaper than implementing a 4 
bus, but not too much slower


Main Memory 

CPU 

Bank 0   Bank 1 Bank 2   Bank 3 

Cache 
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Here is a diagram to show how the memory accesses can be 
interleaved

  The magenta cycles represent sending an address to a memory 

bank

  Each memory bank has a 15-cycle latency, and it takes another 

cycle (shown in blue) to return data from the memory


This is the same basic idea as pipelining!

  As soon as we request data from one memory bank, we can 

request data from another bank as well …

  Each individual load takes 17 clock cycles, but four overlapped 

loads require just 20 cycles


Interleaved memory accesses


Load word 1 
Load word 2 
Load word 3 
Load word 4 

Clock cycles 
15 cycles 
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Which is better?

Increasing block size can improve hit rate (due to spatial locality), 

but transfer time increases. Which cache configuration would 
be better?


Assume both caches have single cycle hit times.  Memory 
accesses take 15 cycles, and the memory bus is 8-bytes wide:

  i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)


recall: AMAT = Hit time + (Miss rate x Miss penalty)


Cache #1
 Cache #2

Block size
 32-bytes
 64-bytes

Miss rate
 5%
 4%
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Writing Cache Friendly Code

Two major rules: 

Repeated references to data are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Example:  cold cache, 4-byte words, 4-word cache blocks


int sum_array_rows(int a[M][N]) 
{ 
  int i, j, sum = 0; 

  for (i = 0; i < M; i++) 
     for (j = 0; j < N; j++) 
        sum += a[i][j]; 
  return sum; 
} 

int sum_array_cols(int a[M][N]) 
{ 
  int i, j, sum = 0; 

  for (j = 0; j < N; j++) 
     for (i = 0; i < M; i++) 
        sum += a[i][j]; 
  return sum; 
} 

Miss rate =  Miss rate =  1/4 = 25% 100% 

Adapted from Randy Bryant 
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Which is better?

Increasing block size can improve hit rate (due to spatial locality), 

but transfer time increases. Which cache configuration would 
be better?


Assume both caches have single cycle hit times  Memory 
accesses take 15 cycles, and the memory bus is 8-bytes wide:

  i.e., a 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)


Cache #1
 Cache #2

Block size
 32-bytes
 64-bytes

Miss rate
 5%
 4%


Cache #1: 
Miss Penalty = 1 + 15 + 32B/8B  

        = 20 cycles 
AMAT = 1 + (.05 * 20) = 2 

Cache #2: 
Miss Penalty = 1 + 15 + 64B/8B  

       = 24 cycles 
AMAT = 1 + (.04 * 24) = ~1.96 
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Caching Data Transfer Summary

Writing to a cache poses a couple of interesting issues


—  Write-through and write-back policies keep the cache 
consistent with main memory in different ways for write hits


—  Write-around and allocate-on-write are two strategies to 
handle write misses, differing in whether updated data is 
loaded into the cache


Memory system performance depends upon the cache 
hit time, miss rate and miss penalty, as well as the 
actual program being executed

 We can use these numbers to find the average memory 

access time

 We can also revise our CPU time formula to include stall 

cycles.



AMAT = Hit time + (Miss rate x Miss penalty)
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Summary (continued)



Memory stall cycles = Memory accesses x miss rate x miss 
penalty



CPU time = (CPU execution cycles + Memory stall cycles) x 
Cycle time


The organization of a memory system affects its 
performance

 The cache size, block size, and associativity affect the miss 

rate

 We can organize the main memory to help reduce miss 

penalties. For example, interleaved memory supports 
pipelined data accesses



