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Review
How is this cache different if…
-  the block is 4 words?
-  the index field is 12 bits?

0 
1 
2 
3 
... 
... 

1022 
1023 

Index Tag Data Valid 

Address (32 bits) 

= 

Hit 

10 20 

Tag 

2 bits 

Mux 

Data 

8 8 8 8 

8 
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2-way set associative implementation

0 
... 
2k 

Index Tag Data Valid 

Address (m bits) 

= 

Hit 

k (m-k-n) 

Tag 

 2-to-1 mux 

Data 

2n 

Tag Valid Data 

2n 

2n 

= 

Index Block 
offset 

Compare a 2-way cache set 
associative cache with a 
fully-associative cache?

Only 2 comparators
needed

Cache tags are a little
shorter too

… deciding replacement?
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Set associative caches are a general idea
By now you have noticed the 1-way set associative 

cache is the same as a direct-mapped cache
Similarly, if a cache has 2k blocks, a 2k-way set 

associative cache would be the same as a fully-
associative cache

0 
1 
2 
3 
4 
5 
6 
7 

 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way 
8 sets, 

1 block each 

2-way 
4 sets, 

2 blocks each 

4-way 
2 sets, 

4 blocks each 

0 

 Set 

8-way 
1 set, 

8 blocks 

direct mapped fully associative 

4 

Summary
Larger block sizes can take advantage of spatial 

locality by loading data from not just one address, 
but also nearby addresses, into the cache

Associative caches assign each memory address to a 
particular set within the cache, but not to any 
specific block within that set
 Set sizes range from 1 (direct-mapped) to 2k (fully 

associative)
 Larger sets and higher associativity lead to fewer cache 

conflicts and lower miss rates, but they also increase the 
hardware cost

  In practice, 2-way through 16-way set-associative caches 
strike a good balance between lower miss rates and higher 
costs

Next, we’ll talk more about measuring cache 
performance, and also discuss the issue of writing 
data to a cache
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Four important questions

1.  When we copy a block of data from main memory to the 
cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if it has 
to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To load a 
new block from main RAM, we’d have to replace one of the 
existing blocks in the cache... which one?

4. How can write operations be handled by the memory 
system?

  Previous lectures answered the first 3.  Today, we consider the 4th! 
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Writing to a cache
Writing to a cache raises several additional issues
First, let’s assume that the address we want to write to 

is already loaded in the cache. We’ll assume a 
simple direct-mapped cache

If we write a new value to that address, we can store 
the new data in the cache, and avoid an expensive 
main memory access

Index Tag Data V Address 

... 

110 

... 

1 11010  42803 

Data 

 42803 

... 

1101 0110 

... 

Index Tag Data V Address 

... 

110 

... 

1 11010  21763 

Data 

 42803 

... 

1101 0110 

... 

Mem[214] = 21763 
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Inconsistent memory
But now the cache and memory contain different, 

inconsistent data!
First Rule of Data Management: No inconsistent data 
Second Rule: Don’t Even Think About Violating 1st Rule

How can we ensure that subsequent loads will return 
the right value?

This is also problematic if other devices are sharing the 
main memory, as in I/O or a multiprocessor system

Index Tag Data V Address 

... 

110 

... 

1 11010   21763 

Data 

42803 

... 

1101 0110 

... 
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Write-through caches
A write-through cache solves the inconsistency 

problem by forcing all writes to update both the 
cache and the main memory.

This is simple to implement and keeps the cache and 
memory consistent

Why might it be not so good?

Index Tag Data V Address 

... 

110 

... 

1 11010  21763 

Data 

21763 

... 

1101 0110 

... 

Mem[214] = 21763 
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Write-through caches
A write-through cache solves the inconsistency 

problem by forcing all writes to update both the 
cache and the main memory.

This is simple to implement and keeps the cache and 
memory consistent.

The bad thing is that forcing every write to go to main 
memory, we use up bandwidth between the cache 
and the memory.

Index Tag Data V Address 

... 

110 

... 

1 11010  21763 

Data 

21763 

... 

1101 0110 

... 

Mem[214] = 21763 
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Write buffers
Write-through caches can result in slow writes, so processors 

typically include a write buffer, which queues pending writes to 
main memory and permits the CPU to continue …

Buffers are commonly used when two devices run at different 
speeds
  If a producer generates data too quickly for a consumer to handle, 

the extra data is stored in a buffer and the producer can continue 
on with other tasks, without waiting for the consumer

  Conversely, if the producer slows down, the consumer can 
continue running at full speed as long as there is excess data in 
the buffer

For us, the producer is the CPU and the consumer is the main 
memory

Buffer Producer Consumer 
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Write buffers
Write-through caches can result in slow writes, so 

processors typically include a write buffer, which 
queues pending writes to main memory and permits 
the CPU to continue …

Notice that the write buffer allows the CPU to continue 
before the write is complete, but write-through has 
the problem: It uses memory bandwidth 

Write 
Buffer CPU Memory 

int sum_array_rows(int a[M][N]) 
{ 
  int i, j, sum = 0; 

  for (i = 0; i < M; i++) 
     for (j = 0; j < N; j++) 
        sum += a[i][j]; 
  return sum; 
} 
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Write-back caches
In a write-back cache, the memory is not updated until the 

cache block needs to be replaced (e.g., when loading 
data into a full cache set)

For example, we might write some data to the cache at 
first, leaving it inconsistent with the main memory as 
shown before
 The cache block is marked “dirty” to indicate this inconsistency

Subsequent reads to the same memory address will be 
serviced by the cache, which contains the correct, 
updated data

Index Tag Data Dirty Address 

... 

110 

... 

1 11010  21763 

Data 

 42803 

1000 1110 

1101 0110 

... 

Mem[214] = 21763 

1225 

V 

1 
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Finishing the write back
We don’t need to store the new value back to main 

memory unless the cache block gets replaced
For example, on a read from Mem[142], which maps to 

the same cache block, the modified cache contents 
will first be written to main memory

Only then can the cache block be replaced with data 
from address 142
Index Tag Data 

... 

110 

... 

10001 1225 

Address Data 

21763 

1000 1110 

1101 0110 

... 

1225 

Dirty 

0 

V 

1 

Dirty 

1 

Index Tag Data 

... 

110 

... 

11010   21763 

Address Data 

21763 

1000 1110 

1101 0110 

... 

1225 

V 

1 
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Write-back cache discussion

The advantage of write-back caches is that not 
all write operations need to access main 
memory, as with write-through caches
 If a single address is frequently written to, then it 

doesn’t pay to keep writing that data through to 
main memory

 If several bytes within the same cache block are 
modified, they will only force one memory write 
operation at write-back time
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Write-back cache discussion
Each block in a write-back cache needs a dirty bit to 

indicate whether or not it must be saved to main 
memory before being replaced—otherwise we might 
perform unnecessary writebacks

Notice the penalty for the main memory access will not 
be applied until the execution of some subsequent 
instruction following the write
  In our example, the write to Mem[214] affected only the 

cache
 But the load from Mem[142] resulted in two memory 

accesses: one to save data to address 214, and one to load 
data from address 142
•  The write can be “buffered” as was shown in write-through
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Write misses

A second scenario is if we try to write to an address 
that is not already contained in the cache; this is 
called a write miss.

Let’s say we want to store 21763 into Mem[1101 0110] 
but we find that address is not currently in the cache.

When we update Mem[1101 0110], should we also load 
it into the cache?

Index Tag Data V Address 

... 

110 

... 

1 00010 123456 

Data 

6378 

... 

1101 0110 

... 
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With a write around policy, the write operation goes 
directly to main memory without affecting the cache

This is good when data is written but not immediately 
used again, in which case there’s no point to load it 
into the cache yet

  for (int i = 0; i < SIZE; i++) 
   a[i] = i; 

Write around caches == write-no-allocate

Index Tag Data V 

... 

110 

... 

1 00010 123456 

Address Data 

21763 

... 

1101 0110 

... 

Mem[214] = 21763 
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Allocate on write

An allocate on write strategy would instead load the 
newly written data into the cache

If that data is needed again soon, it will be available in 
the cache

Index Tag Data V Address 

... 

110 

... 

1 11010 21763 

Data 

21763 

... 

1101 0110 

... 

Mem[214] = 21763 
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Which is it? 
Given the following trace of accesses, can you 

determine whether the cache is write-allocate or 
write-no-allocate?
 Assume A and B are distinct, and can be in the cache 

simultaneously.
Load A 

Store B 

Store A 

Load A 

Load B 

Load B 

Load A 

Miss 

Miss 

Miss 

Hit 

Hit 

Hit 

Hit 
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Which is it? 
Given the following trace of accesses, can you 

determine whether the cache is write-allocate or 
write-no-allocate?
 Assume A and B are distinct, and can be in the cache 

simultaneously.
Load A 

Store B 

Store A 

Load A 

Load B 

Load B 

Load A 

Miss 

Miss 

Miss 

Hit 

Hit 

Hit 

Hit 
On a write-allocate
 cache this would
 be a hit 

Answer: Write-no-allocate 
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First Observations
Split Instruction/Data caches:

 Pro: No structural hazard between IF & MEM stages
•  A single-ported unified cache stalls fetch during load or store

 Con: Static partitioning of cache between instructions & 
data

•  Bad if working sets unequal: e.g., code/DATA or CODE/data

Cache Hierarchies:
 Trade-off between access time & hit rate

•  L1 cache can focus on fast access time (okay hit rate)
•  L2 cache can focus on good hit rate (okay access time)

 Such hierarchical design is another “big idea”

L1 cache CPU Main 
Memory 

L2 cache 
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Opteron Vital Statistics

L1 Caches:  Instruction & Data
  64 kB
  64 byte blocks
  2-way set associative
  2 cycle access time

L2 Cache:
  1 MB
  64 byte blocks
  4-way set associative
  16 cycle access time (total, not just miss penalty)

Memory
  200+ cycle access time

L1 cache CPU Main 
Memory 

L2 cache 


