
1

1

How will execution time grow with SIZE?

int array[SIZE];
int A = 0;

for (int i = 0 ; i < 200000 ; i++) {
 for (int j = 0 ; j < SIZE ; j++) {
 A += array[j];
 }
}

SIZE

TIME

Plot

2

Actual Data

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

Series1

2

3

Memory Systems and I/O

We’ve already seen how to make a fast processor. How

can we supply the CPU with enough data to keep it
busy?

Part of CS378 focuses on memory and input/output
issues, which are frequently bottlenecks that limit the
performance of a system

We start off looking at memory systems and turn to I/O

 How caches can dramatically improve the speed of memory

accesses

 How virtual memory provides security and ease of

programming

 How processors, memory and peripheral devices can be

connected

4

Cache introduction

We’ll answer the following questions.

 What are the challenges of building big, fast memory
systems?

 What is a cache?

 Why caches work?

 How are caches organized?

• Where do we put things -and- how do we find them?

3

5

Small or slow

Unfortunately there is a tradeoff between speed, cost

and capacity.

Fast memory is too expensive to have in abundance

But dynamic memory has a much longer delay than

other functional units in a datapath. If every lw or sw
accessed dynamic memory, we’d have to either
increase the cycle time or stall frequently.

Here are estimates of some current memory parameters

Storage
 Speed
 Cost
 Capacity

Static RAM
 Fastest
 Expensive
 Smallest

Dynamic RAM
Slow
 Cheap
 Large

Hard disks
 Slowest
 Cheapest
 Largest

Storage
 Delay
 Cost/MB
 Capacity

Static RAM
 1-10 cycles
 ~$5
 128KB-2MB

Dynamic RAM
 100-200 cycles
 ~$0.10
 128MB-4GB

Hard disks
 10,000,000 cycles
 ~$0.0005
 20GB-400GB

6

Introducing caches

Wouldn’t it be nice to find a balance

between fast and cheap memory?

We do this with a cache, a small amount

of fast, expensive memory

 The cache goes between the processor

and the slower, dynamic main memory

 It keeps a copy of the most frequently used

data from the main memory

Memory access speed increases overall,
because the common case is faster

 Reads and writes to the most frequently

used addresses will be serviced by the
cache

 We only need to access the slower main
memory for less frequently used data

Lots of
dynamic RAM

A little static
RAM (cache)

CPU

4

7

The principle of locality

It’s usually difficult or impossible to figure out what data
will be “most frequently accessed” before a program
actually runs, which makes it hard to know what to
store into the small, precious cache memory

But in practice, most programs exhibit locality, which
the cache can take advantage of

 The principle of temporal locality says that if a program

accesses one memory address, there is a good chance that
it will access the same address again soon

 The principle of spatial locality says that if a program
accesses one memory address, there is a good chance that
it will also access other nearby addresses

8

The principle of temporal locality says memory accesses
cluster in time

Loops exhibit temporal locality for instructions

 The loop body will be executed many times

 The computer will need to access those same few locations

of the instruction memory repeatedly

For example:

 Each instruction will be fetched repeatedly, once on every
loop iteration

Temporal locality in programs

Loop: lw $t0, 0($s1)
 add $t0, $t0, $s2
 sw $t0, 0($s1)
 addi $s1, $s1, -4
 bne $s1, $0, Loop

5

9

Programs often access the same variables over and
over, especially within loops. Below, sum and i are
repeatedly read and written

Commonly-accessed variables can sometimes be kept
in registers, but this is not always possible.

 There are a limited number of registers

 There are situations where the data must be kept in

memory, as is the case with shared or dynamically-allocated
memory.

Temporal locality in data

sum = 0;
for (i = 0; i < MAX; i++)
 sum = sum + f(i);

10

The principle of spatial locality says that memory
references cluster within an address range

Nearly every program exhibits spatial locality, because
instructions are usually executed in sequence—if we
execute an instruction at memory location i, then we
will probably also execute the next instruction, at
memory location i+1.

Code fragments such as loops exhibit both temporal
and spatial locality.

Spatial locality in programs

sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)

6

11

Programs often access
data that is stored
contiguously

 Arrays, like a in the

code on the top, are
stored in memory
contiguously.

 The individual fields of
a record or object like
employee are also
kept contiguously in
memory

Can data have both
spatial and temporal
locality?

Spatial locality in data

employee.name = “Homer Simpson”;
employee.boss = “Mr. Burns”;
employee.age = 45;

sum = 0;
for (i = 0; i < MAX; i++)
 sum = sum + a[i];

12

Caches exploit temporal locality

The first time the processor reads from
an address in main memory, a copy of
that data is also stored in the cache

 The next time that same address is read,

we can use the copy of the data in the
cache instead of accessing the slower
dynamic memory

 So the first read is a little slower than
before since it goes through both main
memory and the cache, but subsequent
reads are much faster

This takes advantage of temporal locality
—commonly accessed data is stored
in the faster cache memory

Lots of
dynamic RAM

A little static
RAM (cache)

CPU

7

13

Caches exploit spatial locality

When a CPU reads location i from memory,

a copy of that data is placed in the cache

But instead of just copying the contents of

location i, we can copy several values into
the cache at once, such as the four words
from (wd) locations i through i + 3

 If the CPU later needs to read from locations i

+ 1, i + 2 or i + 3, it can access that data from
the cache and not the slower main memory

 For example, instead of reading just one array
element at a time, the cache might actually be
loading four array elements at once

Again, the initial load incurs a performance
penalty, but we’re gambling on spatial
locality and the chance that the CPU will
need the extra data

Lots of
dynamic RAM

A little static
RAM (cache)

CPU

14

Other kinds of caches

The general idea behind caches is used in many other

situations.

Networks are probably the best example.

 Networks have relatively high “latency” and low
“bandwidth,” so repeated data transfers are undesirable.

 Browsers like Firefox and IE store your most recently
accessed web pages on your hard disk

 Administrators can set up a network-wide cache, and
companies like Akamai also provide caching services

A few other examples:

 Many processors have a “translation lookaside buffer,”

which is a cache dedicated to virtual memory support

 Operating systems may store frequently-accessed disk

blocks, like directories, in main memory... and that data may
then in turn be stored in the CPU cache!

8

15

Definitions: Hits and misses

A cache hit occurs if the cache contains the requested

location. Hits are good, because the cache can
return the data much faster than main memory

A cache miss occurs if the cache does not contain the
requested location. This is bad, since the CPU must
then wait for the slower main memory

There are two measurements of cache performance:

 The hit rate is the percentage of memory accesses that are

handled by the cache

 The miss rate (1 - hit rate) is the percentage of accesses

that must be handled by the slower main RAM

Typical caches have a hit rate of 95% or higher, so in
fact most memory accesses will be handled by the
cache and will be dramatically faster

16

A simple cache design

Caches are divided into blocks, a/k/a
cache lines, which may be of
various sizes

 The number of blocks in a cache is

usually a power of 2

 For now we’ll say that each block

contains one byte. This won’t take
advantage of spatial locality, but we’ll
do that next time

Here is an example cache with eight
blocks, each holding one byte

000
001
010
011
100
101
110
111

Block
index 8-bit data

9

17

Four important questions

1.  When we copy a block of data from main memory

to the cache, where exactly should we put it?

2.
 How can we tell if a word is already in the cache,
or if it has to be fetched from main memory first?

3.
 Eventually, the small cache memory might fill up.
To load a new block from main RAM, we’d have to
replace one of the existing blocks in the cache...
which one?

4.
 How can write operations be handled by the
memory system?

  Questions 1 and 2 are related—we have to know where the data is placed
if we ever hope to find it again later!

18

Where should we put data in the cache?

A direct-mapped cache is the simplest approach: each

main memory address maps to exactly one cache
block

For example, on the right

 is a 16-byte main memory

 and a 4-byte cache (four

 1-byte blocks).

Memory locations 0, 4, 8

 and 12 all map to cache

 block 0.

Addresses 1, 5, 9 and 13

 map to cache block 1,

 etc.

How can we compute this

 mapping?

0
1
2
3

Index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

10

19

It’s all divisions…

One way to figure out which cache block a particular

memory address should go to is to use the mod
(remainder) operator

If the cache contains 2k

 blocks, then the data at

 memory address i would

 go to cache block index

 i mod 2k

For instance, with the

 four-block cache here,

 address 14 would map

 to cache block 2

 14 mod 4 = 2

0
1
2
3

Index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

20

…or least-significant bits

An equivalent way to find the placement of a memory

address in the cache is to look at the least significant
k bits of the address

With our four-byte cache

 we would inspect the two

 least significant bits of

 our memory addresses

Again, you can see that

 address 14 (1110 base 2)

 maps to cache block 2

 (10 in binary)

Taking the least k bits of

 a binary value is the same

 as computing that value

 mod 2k

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory
Address

11

21

The second question was how to determine whether or
not the data we’re interested in is already stored in
the cache.

If we want to read memory

 address i, we can use the

 mod trick to determine

 which cache block would

 contain i.

But other addresses might

 also map to the same

 cache block. How can we

 distinguish between them?

For instance, cache block

 2 could contain data from

 addresses 2, 6, 10 or 14.

How can we find data in the cache?

0
1
2
3

Index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

22

Adding tags

We need to add tags to the cache, which

supply the rest of the address bits to let us
distinguish between different memory
locations that map to the same cache block

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Tag Data
00
11
01
01

12

23

Figuring out what’s in the cache

Now we can tell exactly which addresses of
main memory are stored in the cache, by
concatenating the cache block tags with the
block indices

00
01
10
11

Index Tag Data
00
11
01
01

00 + 00 = 0000
11 + 01 = 1101
01 + 10 = 0110
01 + 11 = 0111

Main memory
address in cache block

24

One more detail: the valid bit

When started, the cache does not contain valid data,

I.e. is empty

To account for this we add a valid bit for each block

 When the system is initialized, all the valid bits are set to 0

 When data is loaded into a particular cache block, the

corresponding valid bit is set to 1

So the cache contains more than just copies of the
data in memory; it also has bits to help us find data
within the cache and verify its validity

00
01
10
11

Index Tag Data
00
11
01
01

00 + 00 = 0000
Invalid
Invalid

01 + 11 = 0111

Main memory
address in cache block

1
0
0
1

Valid
Bit

13

25

What happens on a cache hit

When the CPU tries to read from memory, the address

will be sent to a cache controller

 The lowest k bits of the address will index a block in the

cache

 If the block is valid and the tag matches the upper (m - k)

bits of the m-bit address, that data is sent to the CPU

For a 32-bit memory address and a 210-byte cache:

0
1
2
3
...
...

1022
1023

Index Tag Data Valid Address (32 bits)

=

To CPU

Hit

10 22

Index

Tag

26

What happens on a cache miss

The delays that we’ve been assuming for memories

(e.g., 2ns) are really assuming cache hits

 If our CPU implementations accessed main memory

directly, their cycle times would have to be much larger

 Instead we assume that most memory accesses will be

cache hits, which allows us to use a shorter cycle time

However, a much slower main memory access is
needed on a cache miss. The simplest thing to do is
to stall the pipeline until the data from main memory
can be fetched (and also copied into the cache)

14

27

Loading a block into the cache

After data is read from main memory, putting a copy of

that data into the cache is straightforward.

 The lowest k address bits specify a cache block

 The upper (m - k) address bits are stored in the block’s tag

field

 The data is stored in the block’s data field

 The valid bit is set to 1

0
1
2
3
...

...

...

Index Tag Data Valid Address (32 bits)

10 22

Index

Tag

Data

1

28

What if the cache fills up?

Our third question was what to do if we run out of

space in our cache, or if we need to reuse a block for
a different memory address

We answered this question implicitly on the last page!

 A miss causes a new block to be loaded into the cache,

automatically overwriting any previously stored data

 This is a least recently used replacement policy, which

assumes that older data is less likely to be requested than
newer data

We’ll see a few other policies next

15

29

Summary

Basic ideas of caches

 By taking advantage of spatial and temporal locality, we can

use a small amount of fast but expensive memory to
dramatically speed up the average memory access time

 A cache is divided into many blocks, each of which contains
a valid bit, a tag for matching memory addresses to cache
contents, and the data itself

Next we’ll look at some more advanced cache
organizations and see how to measure the
performance of memory systems

