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How will execution time grow with SIZE?


int array[SIZE];   
int A = 0;   

for (int i = 0 ; i < 200000 ; i++) {          
 for (int j = 0 ; j < SIZE ; j++) {                 
  A += array[j];          
 }   
} 

SIZE 

TIME 

Plot 
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Memory Systems and I/O

We’ve already seen how to make a fast processor. How 

can we supply the CPU with enough data to keep it 
busy?


Part of CS378 focuses on memory and input/output 
issues, which are frequently bottlenecks that limit the 
performance of a system


We start off looking at memory systems and turn to I/O

 How caches can dramatically improve the speed of memory 

accesses

 How virtual memory provides security and ease of 

programming

 How processors, memory and peripheral devices can be 

connected
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Cache introduction

We’ll answer the following questions.


 What are the challenges of building big, fast memory 
systems?


 What is a cache?

 Why caches work?  

 How are caches organized?


• Where do we put things -and- how do we find them?
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Small or slow

Unfortunately there is a tradeoff between speed, cost 

and capacity.


Fast memory is too expensive to have in abundance 

But dynamic memory has a much longer delay than 

other functional units in a datapath. If every lw or sw 
accessed dynamic memory, we’d have to either 
increase the cycle time or stall frequently.


Here are estimates of some current memory parameters


Storage
 Speed
 Cost
 Capacity

Static RAM
 Fastest
 Expensive
 Smallest

Dynamic RAM
Slow
 Cheap
 Large

Hard disks
 Slowest
 Cheapest
 Largest


Storage
 Delay
 Cost/MB
 Capacity

Static RAM
 1-10 cycles
 ~$5
 128KB-2MB

Dynamic RAM
 100-200 cycles
 ~$0.10
 128MB-4GB

Hard disks
 10,000,000 cycles
 ~$0.0005
 20GB-400GB
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Introducing caches

Wouldn’t it be nice to find a balance 

between fast and cheap memory?

We do this with a cache, a small amount 

of fast, expensive memory

 The cache goes between the processor 

and the slower, dynamic main memory

 It keeps a copy of the most frequently used 

data from the main memory


Memory access speed increases overall, 
because the common case is faster

 Reads and writes to the most frequently 

used addresses will be serviced by the 
cache


 We only need to access the slower main 
memory for less frequently used data 


Lots of 
dynamic RAM 

A little static 
RAM (cache) 

CPU 



4 

7 

The principle of locality


It’s usually difficult or impossible to figure out what data 
will be “most frequently accessed” before a program 
actually runs, which makes it hard to know what to 
store into the small, precious cache memory


But in practice, most programs exhibit locality, which 
the cache can take advantage of

 The principle of temporal locality says that if a program 

accesses one memory address, there is a good chance that 
it will access the same address again soon


 The principle of spatial locality says that if a program 
accesses one memory address, there is a good chance that 
it will also access other nearby addresses
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The principle of temporal locality says memory accesses 
cluster in time


Loops exhibit temporal locality for instructions

 The loop body will be executed many times

 The computer will need to access those same few locations 

of the instruction memory repeatedly


For example: 


 Each instruction will be fetched repeatedly, once on every 
loop iteration


Temporal locality in programs


Loop: lw $t0, 0($s1) 
 add $t0, $t0, $s2 
 sw $t0, 0($s1) 
 addi $s1, $s1, -4 
 bne $s1, $0, Loop 
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Programs often access the same variables over and 
over, especially within loops. Below, sum and i are 
repeatedly read and written


Commonly-accessed variables can sometimes be kept 
in registers, but this is not always possible.

 There are a limited number of registers

 There are situations where the data must be kept in 

memory, as is the case with shared or dynamically-allocated 
memory.


Temporal locality in data


sum = 0; 
for (i = 0; i < MAX; i++) 
 sum = sum + f(i); 
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The principle of spatial locality says that memory 
references cluster within an address range


Nearly every program exhibits spatial locality, because 
instructions are usually executed in sequence—if we 
execute an instruction at memory location i, then we 
will probably also execute the next instruction, at 
memory location i+1.


Code fragments such as loops exhibit both temporal 
and spatial locality.


Spatial locality in programs


sub $sp, $sp, 16 
sw $ra, 0($sp) 
sw $s0, 4($sp) 
sw $a0, 8($sp) 
sw $a1, 12($sp) 
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Programs often access 
data that is stored 
contiguously

 Arrays, like a in the 

code on the top, are 
stored in memory 
contiguously.


 The individual fields of 
a record or object like 
employee are also 
kept contiguously in 
memory


Can data have both 
spatial and temporal 
locality?


Spatial locality in data


employee.name = “Homer Simpson”; 
employee.boss = “Mr. Burns”; 
employee.age = 45; 

sum = 0; 
for (i = 0; i < MAX; i++) 
 sum = sum + a[i]; 
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Caches exploit temporal locality


The first time the processor reads from 
an address in main memory, a copy of 
that data is also stored in the cache

 The next time that same address is read, 

we can use the copy of the data in the 
cache instead of accessing the slower 
dynamic memory


 So the first read is a little slower than 
before since it goes through both main 
memory and the cache, but subsequent 
reads are much faster


This takes advantage of temporal locality
—commonly accessed data is stored 
in the faster cache memory


Lots of 
dynamic RAM 

A little static 
RAM (cache) 

CPU 
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Caches exploit spatial locality

When a CPU reads location i from memory, 

a copy of that data is placed in the cache

But instead of just copying the contents of 

location i, we can copy several values into 
the cache at once, such as the four words 
from (wd) locations i through i + 3

 If the CPU later needs to read from locations i 

+ 1, i + 2 or i + 3, it can access that data from 
the cache and not the slower main memory


 For example, instead of reading just one array 
element at a time, the cache might actually be 
loading four array elements at once


Again, the initial load incurs a performance 
penalty, but we’re gambling on spatial 
locality and the chance that the CPU will 
need the extra data


Lots of 
dynamic RAM 

A little static 
RAM (cache) 

CPU 
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Other kinds of caches

The general idea behind caches is used in many other 

situations.

Networks are probably the best example.


 Networks have relatively high “latency” and low 
“bandwidth,” so repeated data transfers are undesirable.


 Browsers like Firefox and IE store your most recently 
accessed web pages on your hard disk


 Administrators can set up a network-wide cache, and 
companies like Akamai also provide caching services


A few other examples:

 Many processors have a “translation lookaside buffer,” 

which is a cache dedicated to virtual memory support

 Operating systems may store frequently-accessed disk 

blocks, like directories, in main memory... and that data may 
then in turn be stored in the CPU cache!
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Definitions: Hits and misses

A cache hit occurs if the cache contains the requested 

location. Hits are good, because the cache can 
return the data much faster than main memory


A cache miss occurs if the cache does not contain the 
requested location. This is bad, since the CPU must 
then wait for the slower main memory


There are two measurements of cache performance:

 The hit rate is the percentage of memory accesses that are 

handled by the cache

 The miss rate (1 - hit rate) is the percentage of accesses 

that must be handled by the slower main RAM


Typical caches have a hit rate of 95% or higher, so in 
fact most memory accesses will be handled by the 
cache and will be dramatically faster
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A simple cache design


Caches are divided into blocks, a/k/a 
cache lines, which may be of 
various sizes

 The number of blocks in a cache is 

usually a power of 2

 For now we’ll say that each block 

contains one byte. This won’t take 
advantage of spatial locality, but we’ll 
do that next time


Here is an example cache with eight 
blocks, each holding one byte


000 
001 
010 
011 
100 
101 
110 
111 

Block 
index 8-bit data 
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Four important questions

1.  When we copy a block of data from main memory 

to the cache, where exactly should we put it?


2.
 How can we tell if a word is already in the cache, 
or if it has to be fetched from main memory first?


3.
 Eventually, the small cache memory might fill up. 
To load a new block from main RAM, we’d have to 
replace one of the existing blocks in the cache... 
which one?


4.
 How can write operations be handled by the 
memory system?


  Questions 1 and 2 are related—we have to know where the data is placed 
if we ever hope to find it again later! 
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Where should we put data in the cache?

A direct-mapped cache is the simplest approach: each 

main memory address maps to exactly one cache 
block


For example, on the right


 is a 16-byte main memory


 and a 4-byte cache (four


 1-byte blocks).

Memory locations 0, 4, 8


 and 12 all map to cache


 block 0.

Addresses 1, 5, 9 and 13


 map to cache block 1,

    etc.

How can we compute this


 mapping?


0 
1 
2 
3 

Index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Memory 
Address 
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It’s all divisions…

One way to figure out which cache block a particular 

memory address should go to is to use the mod 
(remainder) operator


If the cache contains 2k



 blocks, then the data at


 memory address i would


 go to cache block index



 
 
 i mod 2k


For instance, with the 


 four-block cache here,


 address 14 would map


 to cache block 2



 
 14 mod 4 = 2


0 
1 
2 
3 

Index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Memory 
Address 
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…or least-significant bits

An equivalent way to find the placement of a memory 

address in the cache is to look at the least significant 
k bits of the address


With our four-byte cache


 we would inspect the two


 least significant bits of


 our memory addresses

Again, you can see that


 address 14 (1110 base 2)


 maps to cache block 2


 (10 in binary)

Taking the least k bits of


 a binary value is the same


 as computing that value


 mod 2k


00 
01 
10 
11 

Index 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Memory 
Address 
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The second question was how to determine whether or 
not the data we’re interested in is already stored in 
the cache.


If we want to read memory


 address i, we can use the


 mod trick to determine


 which cache block would


 contain i.

But other addresses might


 also map to the same 

    cache block. How can we


 distinguish between them?

For instance, cache block


 2 could contain data from


 addresses 2, 6, 10 or 14.


How can we find data in the cache?


0 
1 
2 
3 

Index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Memory 
Address 
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Adding tags

We need to add tags to the cache, which 

supply the rest of the address bits to let us 
distinguish between different memory 
locations that map to the same cache block


00 
01 
10 
11 

Index 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Tag Data 
00 
11 
01 
01 
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Figuring out what’s in the cache


Now we can tell exactly which addresses of 
main memory are stored in the cache, by 
concatenating the cache block tags with the 
block indices


00 
01 
10 
11 

Index Tag Data 
00 
11 
01 
01 

00 + 00 = 0000 
11 + 01 = 1101 
01 + 10 = 0110 
01 + 11 = 0111 

Main memory 
address in cache block 
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One more detail: the valid bit

When started, the cache does not contain valid data, 

I.e. is empty 

To account for this we add a valid bit for each block


 When the system is initialized, all the valid bits are set to 0

 When data is loaded into a particular cache block, the 

corresponding valid bit is set to 1


So the cache contains more than just copies of the 
data in memory; it also has bits to help us find data 
within the cache and verify its validity


00 
01 
10 
11 

Index Tag Data 
00 
11 
01 
01 

00 + 00 = 0000 
Invalid 
Invalid 

01 + 11 = 0111 

Main memory 
address in cache block 

1 
0 
0 
1 

Valid 
Bit 
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What happens on a cache hit

When the CPU tries to read from memory, the address 

will be sent to a cache controller

 The lowest k bits of the address will index a block in the 

cache

 If the block is valid and the tag matches the upper (m - k) 

bits of the m-bit address, that data is sent to the CPU


For a 32-bit memory address and a 210-byte cache:


0 
1 
2 
3 
... 
... 

1022 
1023 

Index Tag Data Valid Address (32 bits) 

= 

To CPU 

Hit 

10 22 

Index 

Tag 
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What happens on a cache miss

The delays that we’ve been assuming for memories 

(e.g., 2ns) are really assuming cache hits

 If our CPU implementations accessed main memory 

directly, their cycle times would have to be much larger 

 Instead we assume that most memory accesses will be 

cache hits, which allows us to use a shorter cycle time


However, a much slower main memory access is 
needed on a cache miss. The simplest thing to do is 
to stall the pipeline until the data from main memory 
can be fetched (and also copied into the cache)
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Loading a block into the cache

After data is read from main memory, putting a copy of 

that data into the cache is straightforward.

 The lowest k address bits specify a cache block

 The upper (m - k) address bits are stored in the block’s tag 

field

 The data is stored in the block’s data field

 The valid bit is set to 1


0 
1 
2 
3 
... 

... 

... 

Index Tag Data Valid Address (32 bits) 

10 22 

Index 

Tag 

Data 
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What if the cache fills up?

Our third question was what to do if we run out of 

space in our cache, or if we need to reuse a block for 
a different memory address


We answered this question implicitly on the last page!

 A miss causes a new block to be loaded into the cache, 

automatically overwriting any previously stored data

 This is a least recently used replacement policy, which 

assumes that older data is less likely to be requested than 
newer data


We’ll see a few other policies next
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Summary


Basic ideas of caches

 By taking advantage of spatial and temporal locality, we can 

use a small amount of fast but expensive memory to 
dramatically speed up the average memory access time


 A cache is divided into many blocks, each of which contains 
a valid bit, a tag for matching memory addresses to cache 
contents, and the data itself


Next we’ll look at some more advanced cache 
organizations and see how to measure the 
performance of memory systems



