
1

Review Multicycle: What is Happening

1

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Controlling The Multicycle Design

2

Result
Zero

ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1
Read
register 2
Write
register
Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

2

3

Stage 1: Instruction fetch & PC increment

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

PC = PC + 4

IR = Mem[PC]

Controls: PCWrite, IorD, MemRead, IRWrite, ALUSrcA==0,
ALUSrcB==1, ALUOp==add, PCSource==0

4

Register File Read

 Devoting whole cycle only to read regs is a waste

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

3

5

Stage 2: Reg fetch & branch target

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Compute branch
target address

Read source
registers

Controls: ALUSrcA==0, ALUSrcB==3, ALUOp==add

6

Stage 3 (beq): Branch completion

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Check for equality
of register contents

Use the target address
computed in stage 2

Controls: ALUSrcA==1, ALUSrcB==0, ALUOp==sub,
PCSource==1, PCWrite==1

4

7

Finite-state machine for the control unit

IorD = 0
MemRead = 1
IRWrite = 1
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 010
PCSource = 0
PCWrite = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 010

Instruction fetch
and PC increment Register fetch and

branch computation

Effective address
computation

Memory
read

Register
 write

Op = LW/SW

Op = SW

Op = LW

MemWrite = 1
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 010

MemRead = 1
IorD = 1

RegWrite = 1
RegDst = 0

MemToReg = 1

Memory
write

R-type
 execution

Op = R-type ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

RegWrite = 1
RegDst = 1

MemToReg = 0

R-type
 writeback

Branch
 completion Op = BEQ

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 110

PCWrite = Zero
PCSource = 1

All instruction are the same for stages 1 and 2

8

Comparing instruction execution times

In the single-cycle datapath, each instruction needs an

entire clock cycle, or 8ns, to execute

With the multicycle CPU, different instructions need

different numbers of clock cycles

 A branch needs 3 cycles, or 3 x 2ns = 6ns

 Arithmetic and sw instructions each require 4 cycles, or 8ns

 Finally, a lw takes 5 cycles, or 10ns

We can make some observations about performance
already

 Loads take longer with this multicycle implementation, while

all other instructions are faster than before.

 So if our program doesn’t have too many loads, then we

should see an increase in performance.

5

9

The gcc example

Let’s assume the gcc instruction mix

In a single-cycle datapath, all instructions take 8ns

The average execution time for an instruction on the

multicycle processor works out to 8.06ns:

(48% x 8ns) + (22% x 10ns) + (11% x 8ns) + (19% x 6ns)
= 3.84 + 2.2 + .88 + 1.14 = 8.06ns

The multicycle implementation is actually slightly slower

Instruction
 Frequency

Arithmetic
 48%

Loads
 22%

Stores
 11%

Branches
 19%

10

Reconsider Memory’s Role

Memory is 50ns, implying single-cycle = 104ns implying a
9.6MHz clock rate

For multi-cycle w/cache, let the processor stall on a
cache miss

  Keep 2ns cycle time or 500MHz clock rate

  Instruction execution for GCC 8.06 ns

Consider executing 109 instructions w/ 106 memory
references: 50ns * 106 = 5*107 ns

 single-cycle = 104 seconds for total of 104.05 sec

 multi-cycle = memory time + instruction execution

time = 0.05 + 8.06 seconds for total of 8.11 sec

6

11

Return:Finite-state machine for control

IorD = 0
MemRead = 1
IRWrite = 1
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 010
PCSource = 0
PCWrite = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 010

Instruction fetch
and PC increment Register fetch and

branch computation

Effective address
computation

Memory
read

Register
 write

Op = LW/SW

Op = SW

Op = LW

MemWrite = 1
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 010

MemRead = 1
IorD = 1

RegWrite = 1
RegDst = 0

MemToReg = 1

Memory
write

R-type
 execution

Op = R-type ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

RegWrite = 1
RegDst = 1

MemToReg = 0

R-type
 writeback

Branch
 completion Op = BEQ

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 110

PCWrite = Zero
PCSource = 1

12

Recall: Implementing the FSM

FSM can be translated into a state table; first 2 states:

You can implement this the hard way – you don’t want to do this

 Represent the current state using flip-flops or a register.

 Find equations for the next state and (control signal) outputs in

terms of the current state and input (instruction word).

Or you can use the easy way.

 Stick the whole state table into a memory, like a ROM

 This would be much easier, since you don’t have to derive

equations

Current
State

Input
(Op)

Next
State

Output (Control signals)

PC
Write

IorD

MemR

ead

Mem
Write

IR
Write

Reg
Dst

MemTo
Reg

Reg
Write

ALU
SrcA

ALU
SrcB

ALU
Op

PC
Source

Instr
Fetch

X

Reg
Fetch

1
 0
 1
 0
 1
 X
 X
 0
 0
 01
 010
 0

Reg
Fetch

BEQ

Branch
compl

0
 X
 0
 0
 0
 X
 X
 0
 0
 11
 010
 X

Reg
Fetch

R-type

R-type
execute

0
 X
 0
 0
 0
 X
 X
 0
 0
 11
 010
 X

Reg
Fetch

LW/SW

Compute
eff addr

0
 X
 0
 0
 0
 X
 X
 0
 0
 11
 010
 X

7

13

Motivation for microprogramming

Think of the control unit’s state diagram as a program

 Each state represents a “command,” or a set of control signals
that tells the datapath what to do

 Several commands are executed sequentially

 “Branches” may be taken depending on the instruction

opcode

 The state machine “loops” by returning to the initial state

We could invent a special language for the control unit

 We could devise a more readable, higher-level notation rather

than dealing directly with binary control signals and state
transitions

 We would design control units by writing “programs” in this
language

 We would depend on a hardware or software translator to
convert our programs into a circuit for the control unit

14

A good notation is very useful

Instead of specifying the exact binary values for each
control signal, we will define a symbolic notation
that’s easier to work with

As a simple example, we might replace ALUSrcB = 01
with ALUSrcB = 4, meaning the constant 4

We can also create symbols that combine several
control signals together. Instead of

IorD = 0

MemRead = 1

IRWrite = 1

 it would be nicer to just say something like

Read PC

8

15

Microinstructions

For the MIPS multicycle we could define
microinstructions with eight fields.

 These fields will be filled in symbolically, instead of in binary

 They determine all the control signals for the datapath.

There are only 8 fields because some of them specify more
than one of the 12 actual control signals

 A microinstruction corresponds to one execution stage, or
one cycle

You can see that in each microinstruction, we can do
something with the ALU, register file, memory, and
program counter units

Label

ALU

control

Src1
 Src2

Register
control

Memory

PCWrite
control

Next

16

Specifying ALU operations

ALU control selects the ALU operation

— Add indicates addition for memory offsets or PC increments

— Sub performs source register comparisons for “beq”

— Func denotes the execution of R-type instructions

SRC1 is either PC or A, for the ALU’s first operand

SRC2, the second ALU operand, can be one of four

different values

— B for R-type instructions and branch comparisons

— The constant 4 to increment the PC

— Extend, the sign-extended constant field for mem refs

— Extshift, sign-extended, shifted constant for branch targets

These correspond to the ALUOp, ALUSrcA and ALUSrcB control
signals, except we use names like “Add” and not actual bits like
“010.”

Label

ALU

control

Src1
 Src2

Register
control

Memory

PCWrite
control

Next

9

17

Specifying register and memory actions

Register control selects a register file action

— Read to read from registers “rs” and “rt” of the instruction

word

— Write ALU writes ALUOut into destination register “rd”

— Write MDR saves MDR into destination register “rt”

Memory chooses the memory unit’s action

— Read PC reads an instruction from address PC into IR

— Read ALU reads data from address ALUOut into MDR

— Write ALU writes register B to address memory ALUOut

Label

ALU

control

Src1
 Src2

Register
control

Memory

PCWrite
control

Next

18

Specifying PC actions

PCWrite control determines what happens to the PC.

— ALU sets PC to ALUOut, used in incrementing the PC.

— ALU-Zero writes ALUOut to PC only if the ALU’s Zero

condition is true. This is used to complete a branch
instruction.

Next determines the next microinstruction to be
executed.

— Seq causes the next microinstruction to be executed.

— Fetch returns to the initial instruction fetch stage.

— Dispatch i is similar to a “switch” or “case” statement; it

branches depending on the actual instruction word.

Label

ALU

control

Src1
 Src2

Register
control

Memory

PCWrite
control

Next

10

19

Microprogramming the first stage

Below are two lines of microcode to implement

the first two multicycle execution stages,
instruction fetch and register fetch

The first line, labeled Fetch, involves several
actions

— Read from memory address PC

— Use ALU to compute PC + 4, and return it to the PC

— Continue on to the next sequential microinstruction

Label
 ALU
control

Src1
 Src2
 Register
control

Memory
 PCWrite
control

Next

Fetch
 Add
 PC
 4
 Read PC
 ALU
 Seq

Add
 PC
 Extshift
 Read
 Dispatch 1

20

The second stage

The second line implements register fetch stage

— Read registers rs and rt from the register file

— Pre-compute PC + (sign-extend(IR[15-0]) << 2) for
branches

— Determine the next microinstruction based on the
opcode of the current MIPS program instruction

Label
 ALU
control

Src1
 Src2
 Register
control

Memory
 PCWrite
control

Next

Fetch
 Add
 PC
 4
 Read PC
 ALU
 Seq

Add
 PC
 Extshift
 Read
 Dispatch 1

switch (opcode) {
 case 4: goto BEQ1;
 case 0: goto Rtype1;
 case 43:
 case 35: goto Mem1;
}

11

21

Completing a beq instruction

Control would transfer to this microinstruction if the
opcode was “beq”

— Compute A-B, to set the ALU’s Zero bit if A=B

— Update PC with ALUOut (which contains the branch target

from the previous cycle) if Zero is set

— The beq is completed, so fetch the next instruction

The 1 in the label BEQ1 reminds us that we came here
via the first branch point (“dispatch table 1”), from
the second execution stage

Label
 ALU
control

Src1
 Src2
 Register
control

Memory
 PCWrite
control

Next

BEQ1
 Sub
 A
 B
 ALU-Zero
 Fetch

22

Completing an arithmetic instruction

When the opcode indicates an R-type instruction…

 The first cycle performs an operation on registers A and B,

based on the MIPS instruction’s func field

 The next stage writes the ALU output to register “rd” from

the MIPS instruction word

We can then go back to the Fetch microinstruction, to
fetch and execute the next MIPS instruction

Label
 ALU
control

Src1
 Src2
 Register
control

Memory
 PCWrite
control

Next

Rtype1
 func
 A
 B
 Seq

Write ALU
 Fetch

12

23

Completing data transfer instructions

For both sw, lw instructions, we should first compute the
effective memory address, A + sign-extend(IR[15-0])

Another dispatch or branch distinguishes between stores
and loads

 For sw, we store data (from B) to the effective memory address

 For lw we copy data from the effective memory address to

register rt

In either case, we continue on to Fetch when done

Label
 ALU
control

Src1
 Src2
 Register
control

Memory
 PCWrite
control

Next

Mem1
 Add
 A
 Extend
 Dispatch 2

SW2
 Write ALU
 Fetch

LW2
 Read ALU
 Seq

Write MDR
 Fetch

24

Microprogramming vs. programming

Microinstructions correspond to control signals

 They describe what is done in a single clock cycle

 These are the most basic operations available in a

processor

Microprograms implement higher-level MIPS
instructions

 MIPS assembly language instructions are comparatively

complex, each possibly requiring multiple clock cycles to
execute

 But each complex MIPS instruction can be implemented
with several simpler microinstructions

13

25

Similarities with assembly language

Microcode is intended to make control unit design easier

 We defined symbols like Read PC to replace binary control
signals

 A translator converts microinstructions into a real control unit

 The translation is straightforward, because each

microinstruction corresponds to one set of control values

This sounds similar to MIPS assembly language!

 We use mnemonics like lw instead of binary opcodes like

100011

 MIPS programs must be assembled to produce real machine

code

 Each MIPS instruction corresponds to a 32-bit instruction

word

26

Managing complexity

It looks like all we’ve done is devise a new notation that
makes it easier to specify control signals

And that’s exactly right! The issue is managing
complexity

 Control units are probably the most challenging part of CPU

design

 Large instruction sets require large state machines with

many states, branches and outputs

 Control units for multicycle processors are difficult to create

and maintain

Applying programming ideas to hardware design is a
useful technique

14

27

Cases when microprogramming is bad

One disadvantage of microprograms is that looking up
control signals in a ROM can be slower than
generating them from simplified circuits

Sometimes complex instructions implemented in
hardware are slower than equivalent assembly
programs written using simpler instructions

 Complex instructions are usually very general, so they can

be used more often. But this also means they can’t be
optimized for specific operands or situations

 Some microprograms just aren’t written very efficiently. But
since they’re built into the CPU, people are stuck with them
(at least until the next processor upgrade)

28

How microcode is used today

Modern CISC processors (like x86) use a combination of
hardwired logic and microcode to balance design effort
with performance

 Control for many simple instructions can be implemented in

hardwired which can be faster than reading a microcode ROM

 Less-used or very complex instructions are microprogrammed

to make the design easier and more flexible (floats, divide)

In this way, designers respect the “first law of
performance”

 Make the common case fast!

