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Review Multicycle: What is Happening
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Controlling The Multicycle Design
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Stage 1: Instruction fetch & PC increment
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PC = PC + 4 

IR = Mem[PC] 

Controls: PCWrite, IorD, MemRead, IRWrite, ALUSrcA==0, 
ALUSrcB==1, ALUOp==add, PCSource==0 
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Register File Read

 Devoting whole cycle only to read regs is a waste
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Stage 2: Reg fetch & branch target
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Stage 3 (beq): Branch completion
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Finite-state machine for the control unit


IorD = 0 
MemRead = 1 
IRWrite = 1 
ALUSrcA = 0 
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All instruction are the same for stages 1 and 2 
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Comparing instruction execution times

In the single-cycle datapath, each instruction needs an 

entire clock cycle, or 8ns, to execute

With the multicycle CPU, different instructions need 

different numbers of clock cycles

 A branch needs 3 cycles, or 3 x 2ns = 6ns

 Arithmetic and sw instructions each require 4 cycles, or 8ns

 Finally, a lw takes 5 cycles, or 10ns


We can make some observations about performance 
already

 Loads take longer with this multicycle implementation, while 

all other instructions are faster than before.

 So if our program doesn’t have too many loads, then we 

should see an increase in performance.
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The gcc example

Let’s assume the gcc instruction mix


In a single-cycle datapath, all instructions take 8ns

The average execution time for an instruction on the 

multicycle processor works out to 8.06ns:


(48% x 8ns) + (22% x 10ns) + (11% x 8ns) + (19% x 6ns) 
= 3.84 + 2.2 + .88 + 1.14 = 8.06ns


The multicycle implementation is actually slightly slower


Instruction
 Frequency

Arithmetic
 48%


Loads
 22%

Stores
 11%


Branches
 19%
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Reconsider Memory’s Role


Memory is 50ns, implying single-cycle = 104ns implying a 
9.6MHz clock rate 


For multi-cycle w/cache, let the processor stall on a 
cache miss

  Keep 2ns cycle time or 500MHz clock rate

  Instruction execution for GCC 8.06 ns


Consider executing 109 instructions w/ 106  memory 
references: 50ns * 106 = 5*107 ns 



 single-cycle = 104 seconds for total of 104.05 sec


 multi-cycle = memory time + instruction execution 

time = 0.05 + 8.06 seconds for total of 8.11 sec
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Return:Finite-state machine for control


IorD = 0 
MemRead = 1 
IRWrite = 1 
ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 010 
PCSource = 0 
PCWrite = 1 

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 010 

Instruction fetch 
and PC increment Register fetch and 

branch computation 

Effective address 
computation 

Memory 
read 

Register 
 write 

Op = LW/SW 

Op = SW 

Op = LW 

MemWrite = 1 
IorD = 1 

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 010 

MemRead = 1 
IorD = 1 

RegWrite = 1 
RegDst = 0 

MemToReg = 1 

Memory 
write 

R-type 
  execution 

Op = R-type ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = func 

RegWrite = 1 
RegDst = 1 

MemToReg = 0 

R-type 
  writeback 

Branch 
  completion Op = BEQ 

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 110 

PCWrite = Zero 
PCSource = 1 

12 

Recall: Implementing the FSM


FSM can be translated into a state table; first 2 states:


You can implement this the hard way – you don’t want to do this

 Represent the current state using flip-flops or a register.

 Find equations for the next state and (control signal) outputs in 

terms of the current state and input (instruction word).

Or you can use the easy way.


 Stick the whole state table into a memory, like a ROM

 This would be much easier, since you don’t have to derive 

equations
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Motivation for microprogramming

Think of the control unit’s state diagram as a program


 Each state represents a “command,” or a set of control signals 
that tells the datapath what to do


 Several commands are executed sequentially

 “Branches” may be taken depending on the instruction 

opcode

 The state machine “loops” by returning to the initial state


We could invent a special language for the control unit

 We could devise a more readable, higher-level notation rather 

than dealing directly with binary control signals and state 
transitions


 We would design control units by writing “programs” in this 
language


 We would depend on a hardware or software translator to 
convert our programs into a circuit for the control unit
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A good notation is very useful


Instead of specifying the exact binary values for each 
control signal, we will define a symbolic notation 
that’s easier to work with


As a simple example, we might replace ALUSrcB = 01 
with ALUSrcB = 4, meaning the constant 4


We can also create symbols that combine several 
control signals together. Instead of


IorD = 0

MemRead = 1


IRWrite = 1



 it would be nicer to just say something like


Read PC
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Microinstructions


For the MIPS multicycle we could define 
microinstructions with eight fields.

 These fields will be filled in symbolically, instead of in binary

 They determine all the control signals for the datapath. 

There are only 8 fields because some of them specify more 
than one of the 12 actual control signals


 A microinstruction corresponds to one execution stage, or 
one cycle


You can see that in each microinstruction, we can do 
something with the ALU, register file, memory, and 
program counter units


Label

ALU 

control

Src1
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control


Memory
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control
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Specifying ALU operations


ALU control selects the ALU operation

— Add indicates addition for memory offsets or PC increments

— Sub performs source register comparisons for “beq”

— Func denotes the execution of R-type instructions


SRC1 is either PC or A, for the ALU’s first operand

SRC2, the second ALU operand, can be one of four 

different values

— B for R-type instructions and branch comparisons

— The constant 4 to increment the PC

— Extend, the sign-extended constant field for mem refs

— Extshift, sign-extended, shifted constant for branch targets


These correspond to the ALUOp, ALUSrcA and ALUSrcB control 
signals, except we use names like “Add” and not actual bits like 
“010.”
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Specifying register and memory actions


Register control selects a register file action

— Read to read from registers “rs” and “rt” of the instruction 

word

— Write ALU writes ALUOut into destination register “rd”

— Write MDR saves MDR into destination register “rt”


Memory chooses the memory unit’s action

— Read PC reads an instruction from address PC into IR

— Read ALU reads data from address ALUOut into MDR

— Write ALU writes register B to address memory ALUOut


Label
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Specifying PC actions


PCWrite control determines what happens to the PC.

— ALU sets PC to ALUOut, used in incrementing the PC.

— ALU-Zero writes ALUOut to PC only if the ALU’s Zero 

condition is true.  This is used to complete a branch 
instruction.


Next determines the next microinstruction to be 
executed.

— Seq causes the next microinstruction to be executed.

— Fetch returns to the initial instruction fetch stage.

— Dispatch i is similar to a “switch” or “case” statement; it 

branches depending on the actual instruction word.
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Microprogramming the first stage

Below are two lines of microcode to implement 

the first two multicycle execution stages, 
instruction fetch and register fetch


The first line, labeled Fetch, involves several 
actions

— Read from memory address PC

— Use ALU to compute PC + 4, and return it to the PC


— Continue on to the next sequential microinstruction


Label
 ALU 
control


Src1
 Src2
 Register 
control


Memory
 PCWrite 
control


Next


Fetch
 Add
 PC
 4
 Read PC
 ALU
 Seq

Add
 PC
 Extshift
 Read
 Dispatch 1
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The second stage


The second line implements register fetch stage

— Read registers rs and rt from the register file


— Pre-compute PC + (sign-extend(IR[15-0]) << 2) for 
branches


— Determine the next microinstruction based on the 
opcode of the current MIPS program instruction


Label
 ALU 
control


Src1
 Src2
 Register 
control


Memory
 PCWrite 
control


Next


Fetch
 Add
 PC
 4
 Read PC
 ALU
 Seq

Add
 PC
 Extshift
 Read
 Dispatch 1


switch (opcode) { 
 case 4: goto BEQ1; 
 case 0: goto Rtype1; 
 case 43: 
 case 35: goto Mem1; 
} 
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Completing a beq instruction


Control would transfer to this microinstruction if the 
opcode was “beq”

— Compute A-B, to set the ALU’s Zero bit if A=B

— Update PC with ALUOut (which contains the branch target 

from the previous cycle) if Zero is set

— The beq is completed, so fetch the next instruction


The 1 in the label BEQ1 reminds us that we came here 
via the first branch point (“dispatch table 1”), from 
the second execution stage


Label
 ALU 
control


Src1
 Src2
 Register 
control


Memory
 PCWrite 
control


Next


BEQ1
 Sub
 A
 B
 ALU-Zero
 Fetch
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Completing an arithmetic instruction


When the opcode indicates an R-type instruction…

 The first cycle performs an operation on registers A and B, 

based on the MIPS instruction’s func field

 The next stage writes the ALU output to register “rd” from 

the MIPS instruction word


We can then go back to the Fetch microinstruction, to 
fetch and execute the next MIPS instruction


Label
 ALU 
control


Src1
 Src2
 Register 
control


Memory
 PCWrite 
control


Next


Rtype1
 func
 A
 B
 Seq

Write ALU
 Fetch
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Completing data transfer instructions


For both sw, lw instructions, we should first compute the 
effective memory address, A + sign-extend(IR[15-0])


Another dispatch or branch distinguishes between stores 
and loads

 For sw, we store data (from B) to the effective memory address

 For lw we copy data from the effective memory address to 

register rt


In either case, we continue on to Fetch when done


Label
 ALU 
control


Src1
 Src2
 Register 
control


Memory
 PCWrite 
control


Next


Mem1
 Add
 A
 Extend
 Dispatch 2

SW2
 Write ALU
 Fetch


LW2
 Read ALU
 Seq


Write MDR
 Fetch
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Microprogramming vs. programming


Microinstructions correspond to control signals

 They describe what is done in a single clock cycle

 These are the most basic operations available in a 

processor


Microprograms implement higher-level MIPS 
instructions

 MIPS assembly language instructions are comparatively 

complex, each possibly requiring multiple clock cycles to 
execute


 But each complex MIPS instruction can be implemented 
with several simpler microinstructions
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Similarities with assembly language

Microcode is intended to make control unit design easier


 We defined symbols like Read PC to replace binary control 
signals


 A translator converts microinstructions into a real control unit

 The translation is straightforward, because each 

microinstruction corresponds to one set of control values


This sounds similar to MIPS assembly language!

 We use mnemonics like lw instead of binary opcodes like 

100011

 MIPS programs must be assembled to produce real machine 

code

 Each MIPS instruction corresponds to a 32-bit instruction 

word
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Managing complexity


It looks like all we’ve done is devise a new notation that 
makes it easier to specify control signals


And that’s exactly right! The issue is managing 
complexity

 Control units are probably the most challenging part of CPU 

design

 Large instruction sets require large state machines with 

many states, branches and outputs

 Control units for multicycle processors are difficult to create 

and maintain


Applying programming ideas to hardware design is a 
useful technique
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Cases when microprogramming is bad


One disadvantage of microprograms is that looking up 
control signals in a ROM can be slower than 
generating them from simplified circuits


Sometimes complex instructions implemented in 
hardware are slower than equivalent assembly 
programs written using simpler instructions

 Complex instructions are usually very general, so they can 

be used more often. But this also means they can’t be 
optimized for specific operands or situations


 Some microprograms just aren’t written very efficiently. But 
since they’re built into the CPU, people are stuck with them 
(at least until the next processor upgrade)
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How microcode is used today


Modern CISC processors (like x86) use a combination of 
hardwired logic and microcode to balance design effort 
with performance

 Control for many simple instructions can be implemented in 

hardwired which can be faster than reading a microcode ROM

 Less-used or very complex instructions are microprogrammed 

to make the design easier and more flexible (floats, divide)


In this way, designers respect the “first law of 
performance”

 Make the common case fast!



