
1

Review

•  Increment instructions like addi $t0, $t0, 1

have the potential to trash a register value in
the single cycle design; why don’t they?

• How long to

 lw $t0,-4($sp)?

1

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

reading the instruction memory ?ns
reading the base register $sp ?ns
computing memory address $sp-4 ?ns
reading the data memory ?ns
storing data back to $t0 ?ns

2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

2

It gets worse!

We’ve made very optimistic assumptions about memory

latency: !
Main memory accesses on modern machines is >50ns

For comparison, an ALU op on a typical machine ~0.3ns

Our worst case cycle (loads) includes 2 memory

accesses: 50 + 1 + 2 + 50 + 1 = 104

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

50 ns
50 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

2

3

A multicycle approach

We’ve informally described instructions as executing in
several steps

1.  Instruction fetch and PC increment.

2.  Reading sources from the register file.

3.  Performing an ALU computation.

4.  Reading or writing (data) memory.

5.  Storing data back to the register file.

What if we made these stages explicit in the hardware
design?

4

Performance benefits

Each instruction can execute only the stages
that are necessary.

 Arithmetic

 Load

 Store

 Branches

This would mean that instructions complete as
soon as possible, instead of being limited by
the slowest instruction

 Proposed execution stages

1.  Instruction fetch and PC increment
2.  Reading sources from the register file
3.  Performing an ALU computation
4.  Reading or writing (data) memory
5.  Storing data back to the register file

3

5

The clock cycle

Things are simpler if we assume that each stage takes one

clock cycle

 Instructions therefore require multiple clock cycles to execute

 But since each stage is fairly simple, the cycle time can be low

For the proposed execution stages below and the sample
datapath delays shown earlier, each stage needs 2ns at
most

 This accounts for the slowest devices, the ALU & data memory

 A 2ns clock cycle time corresponds to a 500MHz clock rate!

 Proposed execution stages

1.  Instruction fetch and PC increment
2.  Reading sources from the register file
3.  Performing an ALU computation
4.  Reading or writing (data) memory
5.  Storing data back to the register file

more than 50
times faster
than single
cycle

6

How Does Multicycle Fix lw?

Load word has two memory accesses; do they still take
50ns each?

Yes, sometimes, but the multi-cycle shifts the emphasis
to the common case:

 Normally, the memory references are

 repeats and “hit” in the instruction

 and data caches, i.e. the desired

 addresses have been referenced before

 and are still around … charge 2ns

 When they are not (full 50ns case)

 everything stalls for that one reference

 … charge 50 ns or 100 ns

We must use slow memory, but we can soften its effect

Mem

Cache

4

Multicycle Design

• Consider the changes required in our design
to turn it into a multicycle version.

•  Topics

 Hardware savings – adders

 Restructuring design – adding muxes

 Unifying the I- and D-memories – IorD mux

 Carrying results over cycles – temporary registers

 Register Write Signals

 Final Design

7

8

Cost Benefits Of Multi-cycle Design

As an added bonus, we can eliminate some of the

hardware from the single-cycle datapath

 We will restrict ourselves to using each functional unit once

per cycle, just like before

 But since instructions require multiple cycles, we could

reuse some units in a different cycle during the execution of
a single instruction

For example, we could use the same ALU:

 to increment the PC (first clock cycle), and

 for arithmetic operations (third clock cycle)

 Proposed execution stages

1.  Instruction fetch and PC increment
2.  Reading sources from the register file
3.  Performing an ALU computation
4.  Reading or writing (data) memory
5.  Storing data back to the register file

5

9

Two extra adders

Our original single-cycle datapath had an ALU and two

adders.

The arithmetic-logic unit had two responsibilities.

 Doing an operation on two registers for arithmetic
instructions.

 Adding a register to a sign-extended constant, to compute
effective addresses for lw and sw instructions.

One of the extra adders incremented the PC by
computing PC + 4.

The other adder computed branch targets, by adding a
sign-extended, shifted offset to (PC + 4).

10

The extra adders of single-cycle

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4
Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

6

11

Our new adder setup

We can eliminate both extra adders in a multicycle

datapath, and use just one ALU, with suitable muxes

A 2-to-1 mux ALUSrcA sets the first ALU input to be

the PC or a register

A 4-to-1 mux ALUSrcB selects the second ALU input :

—  the register file (for arithmetic operations),

— a constant 4 (to increment the PC),

— a sign-extended constant (for effective addresses), and

— a sign-extended and shifted constant (for branch targets).

This permits a single ALU to perform all of the
necessary functions.

— Arithmetic operations on two register operands

—  Incrementing the PC

— Computing effective addresses for lw and sw

— Adding a sign-extended, shifted offset to (PC + 4) for

branches

12

The multicycle adder setup highlighted

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

Shift
left 2

PC

4

0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

Address

Memory

Mem
Data

Write
data

MemRead

MemWrite

PCWrite

7

13

Eliminating a memory

Similarly, we can get by with one unified memory, which

will store both program instructions and data (a
Princeton architecture)

This memory is used in the instruction fetch and data
access stages, and an address could come from:

 the PC register (when we’re fetching an instruction), or

 the ALU output (for the effective address of a lw or sw)

We add another 2-to-1 mux, IorD, to decide whether the
memory is being accessed for instructions or data

 Proposed execution stages

1.  Instruction fetch and PC increment
2.  Reading sources from the register file
3.  Performing an ALU computation
4.  Reading or writing (data) memory
5.  Storing data back to the register file

14

The new memory setup highlighted

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

Shift
left 2

PC

4
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

Address

Memory

Mem
Data

Write
data

MemRead

MemWrite

PCWrite

8

15

Intermediate registers

Sometimes we need the output of a functional unit in a

later clock cycle during one instruction execution

 The instruction word fetched in stage 1 determines the

destination of the register write in stage 5

 The ALU result for an address computation in stage 3 is

needed as the memory address for lw or sw in stage 4

These outputs will have to be stored in intermediate
registers for future use. Otherwise they would
probably be lost by the next clock cycle

 The instruction read in stage 1 is saved in instruction register

 Register file outputs from stage 2 are saved in registers A and

B

 The ALU output will be stored in a register ALUOut

 Any data fetched from memory in stage 4 is kept in the

memory data register, also called MDR

16

The final multicycle datapath

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

ALU
Out B

9

17

Register write control signals

We must add a few more control signals to the datapath

Since instructions now take a variable number of cycles

to execute, we cannot update the PC on each cycle

 Instead, a PCWrite signal controls the loading of the PC

 The instruction register also has a write signal, IRWrite. We

need to keep the instruction word for the duration of its
execution, and must explicitly re-load the instruction register
when needed

The other intermediate registers, MDR, A, B and
ALUOut, will store data for only one clock cycle at
most, and do not need write control signals

18

1.  Instruction fetch and PC increment
2.  Reading sources from the register file
3.  Performing an ALU computation
4.  Reading or writing (data) memory
5.  Storing data back to the register file

Final Design

Result
Zero

ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1
Read
register 2
Write
register
Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

add $s4, $t1, $t2
lw $t0, -4($sp)
beq $at, $0, offset

10

19

Stage 1: Instruction fetch & PC increment

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

PC = PC + 4

IR = Mem[PC]

20

Register File Read

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

11

21

Stage 2: Reg fetch & branch target

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Compute branch
target address

Read source
registers

22

Stage 3 (R-type): instruction execution

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Do some computation
on two source registers

Save the result
in ALUOut

12

23

Stage 4 (R-type): write back

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...and store it to
register “rd”

Take the ALU result
from the last cycle...

24

Stage 3 (sw): compute effective address

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Compute an effective
address and store it in

ALUOut

13

25

Stage 4 (sw): memory write

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...to store data
from one of the

registers...

Use the effective
address from stage 3...

...into memory.

26

Stage 4 (lw): memory read

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...to read data
from memory... Use the effective

address from stage 3...

...into MDR.

14

27

Stage 5 (lw): register write

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0

1

2

3
ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4 [31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...and store it
in register rt.

Take MDR...

28

Summary

A single-cycle CPU has two main disadvantages

 The cycle time is limited by the worst case latency

 It requires more hardware than necessary

A multicycle processor splits instruction execution into
several stages

 Instructions only execute as many stages as required

 Each stage is relatively simple, so the clock cycle time is

reduced

 Functional units can be reused on different cycles

We made several modifications to the single-cycle
datapath

 The two extra adders and one memory were removed

 Multiplexers were inserted so the ALU and memory can be

used for different purposes in different execution stages

 New registers are needed to store intermediate results

