
1

Review
• When a register is filled with a signed value of fewer

bits – how are the more significant bits treated on
MIPS?

• What is $at?
• Explain the difference between a computer’s

assembly language and its machine language
• When a program has a test

if (x < 5) …

the test is usually coded as bge … why?
• Every MIPS instruction is ____ bits long
• What does “opcode” mean?

2

R-type format
• Recall

— op is an operation code or opcode that selects a specific
operation

— rs and rt are the first and second source registers
— rd is the destination register
— shamt is “shift amount” and is only used for shift instructions
— func is used together with op to select an arithmetic

instruction

• For example: add $4, $3, $2

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 000000 00011 00010 00100 00000 10 0000

3

I-type format
• Load, store, branch, & immediate instrs are I-type

— rs is a source register—an address for loads and stores, or an
operand for branch and immediate arithmetic instructions

— rt is a source register for branches, but a destination register
for the other I-type instructions

• For Example: lw $5, 8($6)

 bne $7, $2, skip_next_4

op rs rt address
6 bits 5 bits 5 bits 16 bits

op rs rt address
6 bits 5 bits 5 bits 16 bits

100011 00110 00101 0000 0000 0000 1000

000100 00010 00111 0000 0000 0000 0100

4

• The limited 16-bit constant can present problems for
accesses to global data, so recall that we use lui

• Suppose we want to load from address 0x100a0004.

 lui $at, 0x100a # 0x100a 0000
lw $t1, 0x0004($at) # Read from Mem[0x100a
0004]

Loads and stores

5

• For branch instructions, the constant field is not an
address, but an offset from the current PC or
program counter (== next instruction address) to the
target address: relative addressing

 beq $at, $0, L
 add $v1, $v0, $0
 add $v1, $v1, $v1
 j Somewhere
L: add $v1, $v0, $v0

• Since the branch target L is three instructions past
the beq, the address field would contain 3. The
whole beq instruction would be stored as:

Branches

000100 00001 00000 0000 0000 0000 0011
op rs rt address

6

Larger Branch Constants
• Empirical studies of real programs show that most branches go

to targets less than 32,767 instructions away—branches are
mostly used in loops and conditionals, and programmers are
taught to make code bodies short

• If you do need to branch further, you can use a jump with a
branch. For example, if “far” is very far away, then the effect of:

 beq $s0, $s1, far

• Can be simulated with the following code
bne $s0, $s1, near
j far

near: …

• Again, the MIPS designers have taken care of the common
case first

7

J-type format
• Finally, the jump instruction uses the J-type instruction format.

• The jump instruction has a word address, not an offset
 Remember that each MIPS instruction is one word long,

and word addresses must be divisible by four.
 So instead of saying “jump to address 4000,” it’s enough to

just say “jump to instruction 1000.”
 A 26-bit address field allows for jumps to any address from

0 to 228-1
• your MP solutions had better be smaller than 256MB

• For even longer jumps, the jump register, or jr, instruction can
be used.

jr$ra # Jump to 32-bit address in register $ra

op address

6 bits 26 bits

8

Summary of Machine Language

• Machine language is the binary representation of
instructions:
 The format in which the machine actually executes them

• MIPS machine language is designed to simplify
processor implementation
 Fixed length instructions
 3 instruction encodings: R-type, I-type, and J-type
 Common operations fit in 1 instruction

• Uncommon (e.g., long immediates) require more than one

9

Functions in MIPS

• We’ll talk about the 3 steps in handling function
calls:
1. The program’s flow of control must be changed.
2. Arguments and return values are passed back and forth.
3. Local variables can be allocated and destroyed.

• And how they are handled in MIPS:
 New instructions for calling functions.
 Conventions for sharing registers between functions.
 Use of a stack.

10

Control flow in C

• Invoking a function changes the
control flow of a program twice.
1. Calling the function
2. Returning from the function

• In this example the main function
calls fact twice, and fact returns
twice—but to different locations
in main.

• Each time fact is called, the CPU
has to remember the appropriate
return address.

• Notice that main itself is also a
function! It is called by the
operating system when you run
the program.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i >
1; i--)

f = f * i;
return f;

}

11

Control flow in MIPS

• MIPS uses the jump-and-link instruction jal to call
functions.
 The jal saves the return address (the address of the next

instruction) in the dedicated register $ra, before jumping to
the function.

 jal is the only MIPS instruction that can access the value of
the program counter, so it can store the return address
PC+4 in $ra.

jal fact

• To transfer control back to the caller, the function
just has to jump to the address that was stored in
$ra.

jr $ra

12

Data flow in C

• Functions accept
arguments and produce
return values.

• The blue parts of the
program show the
actual and formal
arguments of the fact
function.

• The purple parts of the
code deal with returning
and using a result.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

13

Data flow in MIPS

• MIPS uses the following conventions for function
arguments and results.
 Up to four function arguments can be “passed” by placing

them in argument registers $a0-$a3 before calling the
function with jal.

 A function can “return” up to two values by placing them in
registers $v0-$v1, before returning via jr.

• These conventions are not enforced by the hardware
or assembler, but programmers agree to them so
functions written by different people can interface
with each other.

• Later we’ll talk about handling additional arguments
or return values.

14

• Assembly language is untyped—there is no
distinction between integers, characters, pointers or
other kinds of values: They’re just bits!

• It is up to you to “type check” your programs. In
particular, make sure your function arguments and
return values are used consistently.

• For example, what happens if somebody passes the
address of an integer (instead of the integer itself) to
the fact function?

A note about types

15

The big problem so far
• There is a big problem here!

The main code uses $t1 to store the result of fact(8).
But $t1 is also used within the fact function!

• The subsequent call to fact(3) will overwrite the
value of fact(8) that was stored in $t1.

16

A: ...
Put B’s args in $a0-
$a3
jal B # $ra = A2

A2: ...

B: ...
Put C’s args in $a0-
$a3,
erasing B’s args!
jal C # $ra = B2

B2: ...
jr $ra # Where does

this go???

C: ...
jr $ra

Nested functions

• A similar situation
happens when you call
a function that then
calls another function.

• Let’s say A calls B,
which calls C.
 The arguments for the

call to C would be
placed in $a0-$a3, thus
overwriting the original
arguments for B.

 Similarly, jal C overwrites
the return address that
was saved in $ra by the
earlier jal B.

17

Spilling registers
• The CPU has a limited number of registers for use by

all functions, and it’s possible that several functions
will need the same registers.

• We can keep important registers from being
overwritten by a function call, by saving them before
the function executes, and restoring them after the
function completes.

• But there are two important questions.
 Who is responsible for saving registers—the caller or the

callee?
 Where exactly are the register contents saved?

18

Who saves the registers?
• Who is responsible for saving important registers

across function calls?
 The caller knows which registers are important to it and

should be saved.
 The callee knows exactly which registers it will use and

potentially overwrite.

• However, in the typical “black box” programming
approach, the caller and callee do not know anything
about each other’s implementation.
 Different functions may be written by different people or

companies.
 A function should be able to interface with any client, and

different implementations of the same function should be
substitutable.

• So how can two functions cooperate and share
registers when they don’t know anything about each
other?

19

The caller could save the registers…
• One possibility is for the

caller to save any important
registers that it needs
before making a function
call, and to restore them
after.

• But the caller does not
know what registers are
actually written by the
function, so it may save
more registers than
necessary.

• In the example on the right,
frodo wants to preserve
$a0, $a1, $s0 and $s1 from
gollum, but gollum may not
even use those registers.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0, $a1, $s0, $s1

jal gollum

Restore registers
$a0, $a1, $s0, $s1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

20

…or the callee could save the registers…

• Another possibility is if the
callee saves and restores
any registers it might
overwrite.

• For instance, a gollum
function that uses registers
$a0, $a2, $s0 and $s2
could save the original
values first, and restore
them before returning.

• But the callee does not
know what registers are
important to the caller, so
again it may save more
registers than necessary.

gollum:
Save registers
$a0 $a2 $s0 $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$a0 $a2 $s0 $s2

jr $ra

21

…or they could work together
• The caller is responsible for saving and restoring any

of the following callER-saved registers

$t0-$t9 $a0-$a3 $v0-$v1

 The callee may freely modify these registers, under the
assumption that the caller already saved them

• The callee is responsible for saving and restoring any
of the following callEE-saved registers that it uses

$s0-$s7 $ra

 The caller may assume these registers are not changed by the
callee.

• $ra is tricky; it is saved by a callee who is also a caller
• Be especially careful when writing nested functions,

which act as both a caller and a callee!

