
1

1

Review

What is a pseudo-instruction?

What true MIPS instruction is equivalent to:

  move $t0, $s1?

•  Assume Registers:

Explain what the following instructions do …

 sb $t0, 4($1)

 lw $t1, 2($2)
 sh $t2, -500($2)

Load Byte: lb reg,addr

0
1

2

 0

 1

 2000
…

M[addr] ? ? ?

2

From Last Time: MIPS Control

•  MIPS’s control-flow instructions

j # for unconditional jumps

bne and beq # for conditional branches

slt and slti # set if less than (w/o and w/ immediate) "

•  As in
j line_label
bne $4, $7, line_label #skip to next part
slt $4, $7, $8 #test $7 less than $8

•  For example, compute |$8| … first test, then branch
 slt $9, $8, $0 #set $9 to 1 if $8 < 0
 beq $9, notNeg #branch if $9 not set
 sub $8, $0, $8 #flip sign

notNeg:

2

3

Pseudo-Branches

•  The MIPS processor only supports two branch
instructions, beq and bne, but to simplify your life the
assembler provides the following other branches:
 blt $t0, $t1, Lab1 # Branch if $t0 < $t1
 ble $t0, $t1, Lab2 # Branch if $t0 <= $t1
 bgt $t0, $t1, Lab3 # Branch if $t0 > $t1
 bge $t0, $t1, Lab4 # Branch if $t0 >= $t1 "

•  There are also immediate versions of these
branches, where the second source is a constant
instead of a register "

•  Later this quarter we’ll see how supporting just beq
and bne simplifies the processor design

4

Implementing Pseudo-Branches

•  Most pseudo-branches are implemented using slt.

Consider a branch-if-less-than instruction
blt $a0, $a1, Label is translated into
 slt $at, $a0, $a1 // $at = 1 if $a0 < $a1
 bne $at, $0, Label // Branch if $at != 0 "

•  This supports immediate branches, which are also
pseudo-instructions. For example,
blti $a0, 5, Label is translated into
 slti $at, $a0, 5 // $at = 1 if $a0 < 5
 bne $at, $0, Label // Branch if $a0 < 5 "

•  All pseudo-branches need a register to save the
result of slt, even though it’s not needed afterwards

 MIPS assemblers use register $1, or $at, for temporary

storage.

 You should be careful in using $at in your own programs, as

it may be overwritten by assembler-generated code.

3

5

Register Correspondences: First View

$zero $0 Zero

$at $1 Assembler temp

$v0-$v1 $2-3 Value (return from fcn)
$a0-$a3 $4-7 Argument (to fcn)
$t0-$t7 $8-15 Temporaries
$s0-$s7 $16-23 Saved Temporaries Saved
$t8-$t9 $24-25 Temporaries
$k0-$k1 $26-27 Kernel (OS) Registers
$gp $28 Global Pointer Saved
$sp $29 Stack Pointer Saved
$fp $30 Frame Pointer Saved
$ra $31 Return Address Saved

6

Translating an if-then Statement

We can use branch instructions to translate if-then
statements into MIPS assembly code

Sometimes it’s easier to invert the original condition.

 In this case, we changed “continue if v0 < 0” to
 “skip if v0 >= 0”.

 This saves one or two instructions
 in the resulting assembly code.

 move $v0, $a0
 bge $v0, $0, Label
 sub $v0, $0, $v0
Label: add $v1, $v0,$v0

 move $v0, $a0
 blt $v0, $0, L1
 j Label
L1: sub $v0, $0, $v0
Label: add $v1, $v0,$v0

4

7

If-Then-Else

In an If-Then-Else there must be branching

 to the else and

 around the else

Increase the magnitude of v0 by one

if (v0 < 0)
 v--;
else
 v++;
v1 = v0;

 bge $v0, $zero, E
 subi $v0, $v0, 1
 j L
E: addi $v0, $v0, 1;
L: move $v1, $v1;

8

What Does This Code Do?

 label: sub $a0, $a0, 1
 bne $a0, $zero, label

5

9

Encoding Loop Structure

for (i = 0; i < 4; i++) {

 // stuff
}
 add $t0, $zero, $zero # initialize i to 0 $t0 = 0

Loop: slti $t1, $t0, 4 # $t1 = 1 if i < 4
 beq $t1, $zero, EoL # Exit if i >= 4
 // stuff
 addi $t0, $t0, 1 # i ++
 j Loop #continue?
EoL:

10

Computing With A Loop

Let’s write a program to count the 1 bits in a 32-bit word
int count = 0; .text main: ## arg in $a0
for (int i = 0 ; i < 32 ; i ++) { …
 int bit = input & 1; li $t0, 0 ## int count = 0;
 if (bit != 0) { li $t1, 0 ## for (int i = 0
 count ++; main_loop:
 } bge $t1, 32, main_exit ## exit loop if i >= 32
 input = input >> 1; andi $t2, $a0, 1 ## bit = input & 1
} beq $t2, $0, main_skip ## skip if bit == 0
 addi $t0, $t0, 1 ## count ++

 main_skip:
 srl $a0, $a0, 1 ## input = input >> 1
 add $t1, $t1, 1 ## i ++

 j main_loop

 main_exit:
 …"

6

11

Assembly vs. machine language

•  So far we’ve been using assembly language.

 We assign names to operations (e.g., add) and operands (e.g.,
$t0)

 Branches and jumps use labels instead of actual addresses

 Assemblers support many pseudo-instructions

•  Programs must eventually be translated into machine
language, a binary format that can be stored in memory
and decoded by the CPU

•  MIPS machine language is designed to be easy to
decode

 Each MIPS instruction is the same length, 32 bits

 There are only three different instruction formats, which are very

similar to each other

•  Studying MIPS machine language will also reveal some
restrictions in the instruction set architecture, and how
they can be overcome.

12

R-type format

•  Register-to-register arithmetic instructions are R-type

•  This format includes six different fields

— op is an operation code or opcode that selects a specific

operation

—  rs and rt are the first and second source registers

—  rd is the destination register

— shamt is “shift amount” and is only used for shift instructions

—  func is used together with op to select an arithmetic

instruction

•  See the text’s inside back cover or the Green Card for

opcodes and function codes for all MIPS instructions

op
 rs
 rt
 rd
 shamt
 func

6 bits
 5 bits
 5 bits
 5 bits
 5 bits
 6 bits

7

13

About the registers

•  We have to encode register names as 5-bit numbers
from 00000 to 11111

 For example, $t8 is register $24, which is represented as

11000

 The complete mapping is given on page B-24 in the book

•  The number of registers available affects the
instruction length

 Each R-type instruction references 3 registers, which

requires a total of 15 bits in the instruction word

 We can’t add more registers without either making

instructions longer than 32 bits, or shortening other fields
like op and possibly reducing the number of available
operations

14

I-type format

•  Load, store, branch, & immediate instructions are I-

type

•  For uniformity, op, rs and rt are in the same positions
as in the R-format

•  The meaning of the register fields depends on
instruction

—  rs is a source register—an address for loads and stores, or an

operand for branch and immediate arithmetic instructions

—  rt is a source register for branches, but a destination register

for the other I-type instructions

•  The address is a 16-bit signed two’s-complement value

 Its range is [-32,768, +32,767]

 But that’s not always enough!

op
 rs
 rt
 address

6 bits
 5 bits
 5 bits
 16 bits

8

15

•  Larger constants can be loaded 16 bits at a time

 The load upper immediate instruction lui loads the highest 16

bits of a register with a constant, and clears the lowest 16 bits to
0s

 An immediate logical OR, ori, then sets the lower 16 bits

•  To load 32-bit value 0000 0000 0011 1101 0000 1001 0000 0000:

 lui $s0, 0x003D # $s0 = 003D 0000 (in hex)

 ori $s0, $s0, 0x0900 # $s0 = 003D 0900

•  This illustrates a Principle: Make the common case fast

 Most of the time, 16-bit constants are enough

 It’s still possible to load 32-bit constants, but at the cost of two

instructions and one temporary register

•  Pseudo-instructions may contain large constants, which the

assembler translates correctly

Larger constants

