Review

What is a pseudo-instruction?
What true MIPS instruction is equivalent to:
< move $t0, $s1?

0
e Assume Registers: 1
2 2000
Explain what the following instructions do ...
sb $t0, 4($1)
w $t1, 2(32)
sh $t2, -500($2)
Load Byte: Ib reg,addr [2 [2 | ? [Miadd

From Last Time: MIPS Control

* MIPS'’s control-flow instructions

j # for unconditional jumps

bne and beq # for conditional branches

slt and slti # set if less than (w/o and w/ immediate)
* Asin

j line_label

bne $4, $7, line_label #skip to next part

slt $4, $7, $8 #test $7 less than $8

« For example, compute |$8| ... first test, then branch
slt $9, $8, $0 #set $9to 1if$8 <0
beq $9, notNeg #branch if $9 not set
sub $8, $0, $8 #flip sign

notNeg:

Pseudo-Branches

+ The MIPS processor only supports two branch
instructions, beq and bne, but to simplify your life the
assembler provides the following other branches:

blt $t0, $t1, Lab1 # Branch if $t0 < $t1
ble $t0, $t1, Lab2 # Branch if $t0 <= $t1
bgt $t0, $t1, Lab3 # Branch if $t0 > $t1
bge $t0, $t1, Lab4 # Branch if $t0 >= $t1

» There are also immediate versions of these
branches, where the second source is a constant
instead of a register

 Later this quarter we’ll see how supporting just beq
and bne simplifies the processor design

Implementing Pseudo-Branches

* Most pseudo-branches are implemented using sit.
Consider a branch-if-less-than instruction

blt $a0, $a1, Label is translated into
slt $at, $a0, $a1 /l $at = 1 if $a0 < $a1
bne $at, $0, Label /I Branch if $at =0

» This supports immediate branches, which are also
pseudo-instructions. For example,

blti $a0, 5, Label is translated into
slti $at, $a0, 5 /| $at=1if $a0 < 5
bne $at, $0, Label // Branch if $a0 < 5

» All pseudo-branches need a register to save the
result of slt, even though it's not needed afterwards

< MIPS assemblers use register $1, or $at, for temporary
storage.

< You should be careful in using $at in your own programs, as
it may be overwritten by assembler-generated code.

Register Correspondences: First View

$zero $0 Zero

$at $1 Assembler temp
$vO-$v1 $2-3 Value (return from fcn)
$a0-$a3 $4-7 Argument (to fcn)
$t0-$t7 $8-15 Temporaries

$s0-$s7 $16-23 Saved Temporaries
$t8-5t9 $24-25 Temporaries

$k0-$k1 $26-27 Kernel (OS) Registers

$gp $28 Global Pointer
$sp $29 Stack Pointer
$fp $30 Frame Pointer
$ra $31 Return Address

Saved

Saved

Saved
Saved
Saved

Translating an if-then Statement

We can use branch instructions to translate if-then

statements into MIPS assembly code

v0 = a0;

i move $v0, $al
= SZJO =< —Sr)O' » bge $v0, $0, Label
) sub $v0, $0, $vO

Label: add $vl1, $v0,$v0

vl = v0 + vO;

Sometimes it's easier to invert the original condition.

< In this case, we changed “continue if vO < 0” to

“skip if vO >=0".
+¢+ This saves one or two instructions move
in the resulting assembly code. blt
Ll: iub
Label: add

$v0, $al
$v0, $0, L1
Label

$v0, $0, $vO
$vl, $vO0,$v0

6

If-Then-Else

In an If-Then-Else there must be branching
to the else and
around the else

Increase the magnitude of vO by one

if (vO <0)
V-
else
V++;
v1 =v0;

=)

bge $v0, Szero,
subi $v0, S$vO,

7 L
E: addi $v0, $vO0,
L: move $vl1, Svl;

1;

1

E

What Does This Code Do?

label: sub $a0, $a0, 1
bne $a0, $zero, label

Encoding Loop Structure

for (i = 0; i < 4; i++) {
/I stuff

}

add $t0, $zero, $zero # initialize i to 0 $t0 =0
Loop: slti $t1, $t0, 4 #$1=1ifi<4

beq $t1, $zero, EoL #Exitifi>=4

/I stuff

addi $t0, $t0, 1 #i++

j Loop #continue?
EoL:

Computing With A Loop

Let’s write a program to count the 1 bits in a 32-bit word

int count = 0; text main: ## arg in $a0
for(inti=0;i<32;i++){
int bit = input & 1; li $t0, O ## int count = 0;
if (bit !=0) { li$t1,0 ## for (inti=0
count ++; main_loop:
} bge $t1, 32, main_exit ## exit loop if i >= 32
input = input >> 1; andi $t2, $a0, 1 ## bit = input & 1
} beq $t2, $0, main_skip ## skip if bit == 0
addi $t0, $t0, 1 ## count ++
main_skip:
srl $a0, $a0, 1 ## input = input >> 1
add $t1, $t1, 1 #HEQ++
j main_loop

main_exit:

Assembly vs. machine language

So far we’ve been using assembly language.
++ We assign names to operations (e.g., add) and operands (e.g.,
$t0)
+ Branches and jumps use labels instead of actual addresses
+» Assemblers support many pseudo-instructions

Programs must eventually be translated into machine
language, a binary format that can be stored in memory
and decoded by the CPU

MIPS machine language is designed to be easy to
decode

« Each MIPS instruction is the same length, 32 bits

+ There are only three different instruction formats, which are very

similar to each other

Studying MIPS machine language will also reveal some
restrictions in the instruction set architecture, and how
they can be overcome. "

R-type format

Register-to-register arithmetic instructions are R-type

| op | rs | rt | rd |shamt| func|
6 bits 5bits 5bits 5bits 5bits 6 bits

This format includes six different fields

— op is an operation code or opcode that selects a specific
operation

— rs and rt are the first and second source registers
— rd is the destination register
— shamt is “shift amount” and is only used for shift instructions
— func is used together with op to select an arithmetic
instruction
See the text’s inside back cover or the Green Card for
opcodes and function codes for all MIPS instructions

12

About the registers

¢ We have to encode register names as 5-bit numbers
from 00000 to 11111
% For example, $t8 is register $24, which is represented as
11000
+« The complete mapping is given on page B-24 in the book

e The number of registers available affects the
instruction length

« Each R-type instruction references 3 registers, which
requires a total of 15 bits in the instruction word

+ We can’t add more registers without either making
instructions longer than 32 bits, or shortening other fields
like op and possibly reducing the number of available
operations

|-type format

e |oad, store, branch, & immediate instructions are |-
type

| op | rs | rt | address |
6 bits 5bits 5 bits 16 bits

e For uniformity, op, rs and rt are in the same positions
as in the R-format

e The meaning of the register fields depends on
instruction
— rs is a source register—an address for loads and stores, or an
operand for branch and immediate arithmetic instructions
— rtis a source register for branches, but a destination register
for the other I-type instructions
e The address is a 16-bit signed two’s-complement value
¢ Its range is [-32,768, +32,767]
+» But that’s not always enough! 14

Larger constants

Larger constants can be loaded 16 bits at a time

+« The load upper immediate instruction lui loads the highest 16

bits of a register with a constant, and clears the lowest 16 bits to
Os

% An immediate logical OR, ori, then sets the lower 16 bits
To load 32-bit value 0000 0000 0011 1101 0000 1001 0000 0000:

Tui $s0, 0x003D # $s0
ori $s0, $s0, # $s0

003D 0000 (in hex)
003D

This illustrates a Principle: Make the common case fast
+ Most of the time, 16-bit constants are enough
+» It’s still possible to load 32-bit constants, but at the cost of two
instructions and one temporary register
Pseudo-instructions may contain large constants, which the
assembler translates correctly 15

