
1

1

Review
What is a pseudo-instruction?
What true MIPS instruction is equivalent to:

  move $t0, $s1?

•  Assume Registers:

Explain what the following instructions do …
 sb $t0, 4($1)
 lw $t1, 2($2)
 sh $t2, -500($2)

Load Byte: lb reg,addr

0
1

2

 0

 1

 2000
…

M[addr] ? ? ?

2

From Last Time: MIPS Control

•  MIPS’s control-flow instructions
j # for unconditional jumps
bne and beq # for conditional branches
slt and slti # set if less than (w/o and w/ immediate) "

•  As in
j line_label
bne $4, $7, line_label #skip to next part
slt $4, $7, $8 #test $7 less than $8

•  For example, compute |$8| … first test, then branch
 slt $9, $8, $0 #set $9 to 1 if $8 < 0
 beq $9, notNeg #branch if $9 not set
 sub $8, $0, $8 #flip sign

notNeg:

2

3

Pseudo-Branches

•  The MIPS processor only supports two branch
instructions, beq and bne, but to simplify your life the
assembler provides the following other branches:
 blt $t0, $t1, Lab1 # Branch if $t0 < $t1
 ble $t0, $t1, Lab2 # Branch if $t0 <= $t1
 bgt $t0, $t1, Lab3 # Branch if $t0 > $t1
 bge $t0, $t1, Lab4 # Branch if $t0 >= $t1 "

•  There are also immediate versions of these
branches, where the second source is a constant
instead of a register "

•  Later this quarter we’ll see how supporting just beq
and bne simplifies the processor design

4

Implementing Pseudo-Branches
•  Most pseudo-branches are implemented using slt.

Consider a branch-if-less-than instruction
blt $a0, $a1, Label is translated into
 slt $at, $a0, $a1 // $at = 1 if $a0 < $a1
 bne $at, $0, Label // Branch if $at != 0 "

•  This supports immediate branches, which are also
pseudo-instructions. For example,
blti $a0, 5, Label is translated into
 slti $at, $a0, 5 // $at = 1 if $a0 < 5
 bne $at, $0, Label // Branch if $a0 < 5 "

•  All pseudo-branches need a register to save the
result of slt, even though it’s not needed afterwards
 MIPS assemblers use register $1, or $at, for temporary

storage.
 You should be careful in using $at in your own programs, as

it may be overwritten by assembler-generated code.

3

5

Register Correspondences: First View
$zero $0 Zero
$at $1 Assembler temp
$v0-$v1 $2-3 Value (return from fcn)
$a0-$a3 $4-7 Argument (to fcn)
$t0-$t7 $8-15 Temporaries
$s0-$s7 $16-23 Saved Temporaries Saved
$t8-$t9 $24-25 Temporaries
$k0-$k1 $26-27 Kernel (OS) Registers
$gp $28 Global Pointer Saved
$sp $29 Stack Pointer Saved
$fp $30 Frame Pointer Saved
$ra $31 Return Address Saved

6

Translating an if-then Statement

We can use branch instructions to translate if-then
statements into MIPS assembly code

Sometimes it’s easier to invert the original condition.
 In this case, we changed “continue if v0 < 0” to
 “skip if v0 >= 0”.
 This saves one or two instructions
 in the resulting assembly code.

 move $v0, $a0
 bge $v0, $0, Label
 sub $v0, $0, $v0
Label: add $v1, $v0,$v0

 move $v0, $a0
 blt $v0, $0, L1
 j Label
L1: sub $v0, $0, $v0
Label: add $v1, $v0,$v0

4

7

If-Then-Else

In an If-Then-Else there must be branching
 to the else and
 around the else
Increase the magnitude of v0 by one

if (v0 < 0)
 v--;
else
 v++;
v1 = v0;

 bge $v0, $zero, E
 subi $v0, $v0, 1
 j L
E: addi $v0, $v0, 1;
L: move $v1, $v1;

8

What Does This Code Do?

 label: sub $a0, $a0, 1
 bne $a0, $zero, label

5

9

Encoding Loop Structure

for (i = 0; i < 4; i++) {
 // stuff
}
 add $t0, $zero, $zero # initialize i to 0 $t0 = 0
Loop: slti $t1, $t0, 4 # $t1 = 1 if i < 4
 beq $t1, $zero, EoL # Exit if i >= 4
 // stuff
 addi $t0, $t0, 1 # i ++
 j Loop #continue?
EoL:

10

Computing With A Loop

Let’s write a program to count the 1 bits in a 32-bit word
int count = 0; .text main: ## arg in $a0
for (int i = 0 ; i < 32 ; i ++) { …
 int bit = input & 1; li $t0, 0 ## int count = 0;
 if (bit != 0) { li $t1, 0 ## for (int i = 0
 count ++; main_loop:
 } bge $t1, 32, main_exit ## exit loop if i >= 32
 input = input >> 1; andi $t2, $a0, 1 ## bit = input & 1
} beq $t2, $0, main_skip ## skip if bit == 0
 addi $t0, $t0, 1 ## count ++
 main_skip:
 srl $a0, $a0, 1 ## input = input >> 1
 add $t1, $t1, 1 ## i ++
 j main_loop
 main_exit:
 …"

6

11

Assembly vs. machine language
•  So far we’ve been using assembly language.

 We assign names to operations (e.g., add) and operands (e.g.,
$t0)

 Branches and jumps use labels instead of actual addresses
 Assemblers support many pseudo-instructions

•  Programs must eventually be translated into machine
language, a binary format that can be stored in memory
and decoded by the CPU

•  MIPS machine language is designed to be easy to
decode
 Each MIPS instruction is the same length, 32 bits
 There are only three different instruction formats, which are very

similar to each other

•  Studying MIPS machine language will also reveal some
restrictions in the instruction set architecture, and how
they can be overcome.

12

R-type format

•  Register-to-register arithmetic instructions are R-type

•  This format includes six different fields
— op is an operation code or opcode that selects a specific

operation
—  rs and rt are the first and second source registers
—  rd is the destination register
— shamt is “shift amount” and is only used for shift instructions
—  func is used together with op to select an arithmetic

instruction
•  See the text’s inside back cover or the Green Card for

opcodes and function codes for all MIPS instructions

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

7

13

About the registers

•  We have to encode register names as 5-bit numbers
from 00000 to 11111
 For example, $t8 is register $24, which is represented as

11000
 The complete mapping is given on page B-24 in the book

•  The number of registers available affects the
instruction length
 Each R-type instruction references 3 registers, which

requires a total of 15 bits in the instruction word
 We can’t add more registers without either making

instructions longer than 32 bits, or shortening other fields
like op and possibly reducing the number of available
operations

14

I-type format
•  Load, store, branch, & immediate instructions are I-

type

•  For uniformity, op, rs and rt are in the same positions
as in the R-format

•  The meaning of the register fields depends on
instruction
—  rs is a source register—an address for loads and stores, or an

operand for branch and immediate arithmetic instructions
—  rt is a source register for branches, but a destination register

for the other I-type instructions
•  The address is a 16-bit signed two’s-complement value

 Its range is [-32,768, +32,767]
 But that’s not always enough!

op rs rt address
6 bits 5 bits 5 bits 16 bits

8

15

•  Larger constants can be loaded 16 bits at a time
 The load upper immediate instruction lui loads the highest 16

bits of a register with a constant, and clears the lowest 16 bits to
0s

 An immediate logical OR, ori, then sets the lower 16 bits

•  To load 32-bit value 0000 0000 0011 1101 0000 1001 0000 0000:

 lui $s0, 0x003D # $s0 = 003D 0000 (in hex)

 ori $s0, $s0, 0x0900 # $s0 = 003D 0900

•  This illustrates a Principle: Make the common case fast
 Most of the time, 16-bit constants are enough
 It’s still possible to load 32-bit constants, but at the cost of two

instructions and one temporary register
•  Pseudo-instructions may contain large constants, which the

assembler translates correctly

Larger constants

