
1

1

Review

About how much of the AMD Opteron chip is L2 cache?

What is computer architecture the study of?

The MIPS (a) is a load/store architecture, (b) is a register-

register machine, (c) has an ISA, (d) all of the above

What does ISA stand for, and what is it?

In a machine instruction the registers are called (a)

operands, (b) noops, (c) opcodes

How many bits are needed to name a MIPS register?

What is the C equivalent to: sub $t0, $t1, $t2 ?

… and what does RAM stand for?

2

Memory

Memory sizes are specified much like register files; here
is a 2k x n RAM

A chip select input CS enables or ‘disables’ the RAM !
ADRS specifies the memory location to access
WR selects between reading from or writing to the

memory

 To read from memory, WR should be set to 0. OUT will be

the k-bit value stored at ADRS

 To write to memory, we set WR = 1. DATA is the k-bit value

to store in memory

2

3

MIPS Memory

MIPS memory is byte-addressable, which means that
each memory address references an 8-bit quantity. !

The MIPS architecture can support up to 32 address
lines.

 This results in a 232 x 8 RAM, which would be 4 GB of

memory.

 Not all MIPS machines will actually have that much!

4

Loading and Storing Bytes

The MIPS instruction set includes dedicated load and
store instructions for accessing memory

These differ from other instructions because they use
indexed addressing == a base + offset

 The address operand specifies a register (base) and a

signed constant (offset)

 These values are added to generate the effective address. !

The MIPS load byte instruction lb transfers one byte of
data from main memory to a register.
lb $t0, 20($a0) # $t0 = Memory[$a0 + 20] !

The store byte instruction sb transfers the lowest byte of
data from a register into main memory.
sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

3

5

Loading and Storing Words

You can also load or store 32-bit quantities -- a complete
word instead of just a byte -- with the lw and sw
instructions.
 lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]
 sw $t0, 20($a0) # Memory[$a0 + 20] = $t0 !

Most programming languages support several 32-bit data
types.

 Integers

 Single-precision floating-point numbers

 Memory addresses, or pointers !

Unless otherwise stated, we’ll assume words are the
basic unit of data

6

An Array of Words From Memory of Bytes

Use care with memory addresses when accessing words !
For instance, assume an array of words begins at

address 2000

 The first array element is at address 2000

 The second word is at address 2004, not 2001

Example, if $a0 contains 2000, then

lw $t0, 0($a0)

accesses the first word of the array, but

lw $t0, 8($a0)

would access the third word of the array, at address 2008

Memory is byte addressed but usually word referenced

4

7

Memory Alignment

Picture words of data stored in byte-addressable

memory as follows

The MIPS architecture requires words to be aligned in
memory; 32-bit words must start at an address that is
divisible by 4.

 0, 4, 8 and 12 are valid word addresses

 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses

 Unaligned memory accesses result in a bus error, which you

may have unfortunately seen before !
This restriction has relatively little effect on high-level

languages and compilers, but it makes things easier
and faster for the processor

8

Computing on Data in Memory

So, to compute with memory-based data, you must:

1.  Load the data from memory to the register file

2.  Do the computation, leaving the result in a register

3.  Store that value back to memory if needed !

Let’s say you want to do some addition on values in memory:
char A[4] = {1, 2, 3, 4};

int result;

How can you do the following using MIPS assembly language?
result = A[0] + A[1] + A[2] + A[3];

A two part task:
  Define the data layout
  Define the computation

5

In MIPS Assembler …

9

#=======================================
Static data allocation and initialization
#=======================================

.data

A: .byte 1, 2, 3, 4 # Create space for A, and give
 # values in decimal: 1, 2, 3, 4
result: .word 9 # allocate 32 bits,
 # initialize to 9 for no good reason

In MIPS Assembler

#==================================

Program Text

#==================================

.text

main:

…

lb $t0, 0($a0) #Set up so A’s addr is in reg $a0, load A[0]
lb $t1, 1($a0) #Get second element A[1]
add $t0, $t1, $t0 #Add in second element
lb $t1, 2($a0) #Get third element A[2]
add $t0, $t1, $t0 #Add in third element
lb $t1, 3($a0) #Get fourth element A[3]
add $t0, $t1, $t0 #Add in fourth element
sw $t0, 0($a1) #Set up so result’s addr is in reg $a1, save

10

6

11

Pseudo Instructions

MIPS assemblers support pseudo-instructions giving

the illusion of a more expressive instruction set by
translating into 1 or more simpler, “real” instructions !

For example, li and move are pseudo-instructions:
 li $a0, 2000 # Load immediate 2000 into $a0
 move $a1, $t0 # Copy $t0 into $a1 !

They are probably clearer than their corresponding
MIPS instructions:
 addi $a0, $0, 2000 # Initialize $a0 to 2000
 add $a1, $t0, $0 # Copy $t0 into $a1 !

We’ll see more pseudo-instructions this semester.

 A complete list of instructions is given in Appendix A
 Unless otherwise stated, you can always use pseudo-

instructions in your assignments and on exams

12

Control Flow

•  Instructions usually execute one after another, but it’s often

necessary to alter the normal control flow

  Conditional statements execute only if some test is true

  Loops cause some statements to execute many times

// Find the absolute value of a0
v0 = a0;
if (v0 < 0)
 v0 = -v0; // This might not be executed
v1 = v0 + v0;

 // Sum the elements of a five-element array a0
v0 = 0;
t0 = 0;
while (t0 < 5) {
 v0 = v0 + a0[t0]; // These statements will
 t0++; // be executed five times
}

7

13

MIPS Control Instructions

•  MIPS’s control-flow instructions

j # for unconditional jumps

bne and beq # for conditional branches

slt and slti # set if less than (w/o and w/ immediate) !

•  As in
j line_label
bne $4, $7, line_label #skip to next part
slt $4, $7, $8 #test $7 less than $8

•  For example, compute |$8| … first test, then branch
 slt $9, $8, $0 #set $9 to 1 if $8 < 0
 beq $9, notNeg #branch if $9 not set
 sub $8, $0, $8 #flip sign

notNeg:

