Review

About how much of the AMD Opteron chip is L2 cache?
What is computer architecture the study of?

The MIPS (a) is a load/store architecture, (b) is a register-
register machine, (c) has an ISA, (d) all of the above

What does ISA stand for, and what is it?

In a machine instruction the registers are called (a)
operands, (b) noops, (c) opcodes

How many bits are needed to name a MIPS register?

What is the C equivalent to: sub $t0, $tl, $t2 ?

... and what does RAM stand for?

Memory

Memory sizes are specified much like register files; here
is a 2 x n RAM

2> n memory CS WR Operation
Kl AORSoUT (s 0 X |None
A > Elsm 1 0 | Read selected address
| WR 1 1 | Write selected address

A chip select input CS enables or ‘disables’ the RAM
ADRS specifies the memory location to access

WR selects between reading from or writing to the
memory
+ To read from memory, WR should be set to 0. OUT will be
the k-bit value stored at ADRS
+ To write to memory, we set WR = 1. DATA is the k-bit value
to store in memory 2

MIPS Memory

232 x 8 memory
32,0 aors out Fps
—8,,| DATA
— cs
J WR

MIPS memory is byte-addressable, which means that
each memory address references an 8-bit quantity.

The MIPS architecture can support up to 32 address

lines.
% This results in a 232 x 8 RAM, which would be 4 GB of
memory.
+» Not all MIPS machines will actually have that much!

Loading and Storing Bytes

The MIPS instruction set includes dedicated load and
store instructions for accessing memory
These differ from other instructions because they use
indexed addressing == a base + offset
+« The address operand specifies a register (base) and a
signed constant (offset)
+ These values are added to generate the effective address.
The MIPS load byte instruction Ib transfers one byte of
data from main memory to a register.
Ib $t0, 20($a0) # $t0 = Memory[$a0 + 20]
The store byte instruction sb transfers the lowest byte of
data from a register into main memory.
sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

Loading and Storing Words

You can also load or store 32-bit quantities -- a complete
word instead of just a byte -- with the Iw and sw
instructions.

Iw $t0, 20($a0) # $t0 = Memory[$a0 + 20]
sw $t0, 20($a0) # Memory[$a0 + 20] = $t0
Most programming languages support several 32-bit data
types.

+ Integers
+¢+ Single-precision floating-point numbers
+ Memory addresses, or pointers
Unless otherwise stated, we’ll assume words are the
basic unit of data

An Array of Words From Memory of Bytes

Use care with memory addresses when accessing words

For instance, assume an array of words begins at
address 2000

+ The first array element is at address 2000
+ The second word is at address 2004, not 2001
Example, if $a0 contains 2000, then
Iw $t0, 0($a0)
accesses the first word of the array, but
Iw $t0, 8($a0)
would access the third word of the array, at address 2008

Memory is addressed but usually referenced

6

Memory Alignment

Picture words of data stored in byte-addressable
memory as follows

Address 0 1 2 3 4 5 6 7 8 9 10 11
gbitdata | [| [[[[| [[| [|

- AN AN J
Y Y

Word 1 Word 2 Wo\r,d 3
The MIPS architecture requires words to be aligned in
memory; 32-bit words must start at an address that is
divisible by 4.
% 0, 4, 8 and 12 are valid word addresses
%1,2,3,5/6,7,9, 10 and 11 are not valid word addresses
+«+ Unaligned memory accesses result in a bus error, which you
may have unfortunately seen before
This restriction has relatively little effect on high-level
languages and compilers, but it makes things easier
and faster for the processor 7

Computing on Data in Memory

So, to compute with memory-based data, you must:
1. Load the data from memory to the register file
2. Do the computation, leaving the result in a register
3. Store that value back to memory if needed

Let’'s say you want to do some addition on values in memory:
char A[4] = {1, 2, 3, 4};
int result;

How can you do the following using MIPS assembly language?
result = A[0] + A[1] + A[2] + A[3];

A two part task:
+ Define the data layout
+« Define the computation

In MIPS Assembler ...

#::=====================================
Static data allocation and initialization
#::=====================================
.data
A: .byte 1,2, 3,4 # Create space for A, and give
values indecimal: 1, 2, 3, 4
result: .word 9 # allocate 32 bits,
initialize to 9 for no good reason
9
In MIPS Assembler
#
Program Text
#
text
main:
b $t0, 0($a0) #Set up so A’s addr is in reg $a0, load A[0]
b $t1, 1($a0) #Get second element A[1]
add $tO, $t1, $t0 #Add in second element
b $t1, 2($a0) #Get third element A[2]
add $t0, $t1, $t0 #Add in third element
b $t1, 3($a0) #Get fourth element A[3]

add $t0, $t1, $t0 #Add in fourth element
sw $t0, 0($a1) #Set up so result’s addr is in reg $a1, save

Pseudo Instructions

MIPS assemblers support pseudo-instructions giving
the illusion of a more expressive instruction set by
translating into 1 or more simpler, “real” instructions

For example, li and move are pseudo-instructions:

li $a0, 2000 # Load immediate 2000 into $a0
move $a1, $t0 # Copy $t0 into $a1

They are probably clearer than their corresponding
MIPS instructions:

addi $a0, $0, 2000 # Initialize $a0 to 2000
add $a1, $t0, $0 # Copy $t0 into $a1
We’ll see more pseudo-instructions this semester.
+« A complete list of instructions is given in Appendix A

+« Unless otherwise stated, you can always use pseudo-
instructions in your assignments and on exams

Control Flow

» Instructions usually execute one after another, but it's often
necessary to alter the normal control flow

/I Find the absolute value of a0
v0 = a0;
if (vO < Q)
v0 = -v0; /I This might not be executed
vl =v0 + vO;

« Conditional statements execute only if some test is true

// Sum the elements of a five-element array a0
v0 =0;
t0 =0;
while (10 < 5) {
v0 = v0 + a0f[t0]; /I These statements will
t0++; /I be executed five times
}

« Loops cause some statements to execute many times

MIPS Control Instructions

 MIPS’s control-flow instructions

j # for unconditional jumps

bne and beq # for conditional branches

slt and slti # set if less than (w/o and w/ immediate)
* Asin

j line_label

bne $4, $7, line_label #skip to next part

slt $4, $7, $8 #test $7 less than $8

« For example, compute |$8]| ... first test, then branch
slt $9, $8, $0 #set$9to 1if$8 <0
beq $9, notNeg #branch if $9 not set
sub $8, $0, $8 #flip sign

notNeg:

