
1

1

Lecture 25 (Mon & Wed 12/01 & 03/2008)

• HW #4 (optional) – Due Fri Dec 5 during class

• Lab #4 Hardware – Due Fri Dec 5 at 5pm

� Today: Parallelism!

2

Pipelining vs. Parallel processing

� In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where each

piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single

functional unit

� We will briefly introduce the key ideas behind parallel processing

— instruction level parallelism

— thread-level parallelism

2

3

Exploiting Parallelism

� Of the computing problems for which performance is important, many

have inherent parallelism

� Best example: computer games

— Graphics, physics, sound, AI etc. can be done separately

— Furthermore, there is often parallelism within each of these:

• Each pixel on the screen’s color can be computed independently

• Non-contacting objects can be updated/simulated independently

• Artificial intelligence of non-human entities done independently

� Another example: Google queries

— Every query is independent

— Google is read-only!!

4

Parallelism at the Instruction Level

add $2 <- $3, $4
or $2 <- $2, $4
lw $6 <- 0($4)
addi $7 <- $6, 0x5
sub $8 <- $8, $4

Dependences?
RAW
WAW
WAR

When can we reorder instructions?

add $2 <- $3, $4
or $5 <- $2, $4
lw $6 <- 0($4)
sub $8 <- $8, $4
addi $7 <- $6, 0x5

When should we reorder instructions?

Surperscalar Processors:
Multiple instructions executing in
parallel at *same* stage

3

5

Data Dependences

Flow dependence - RAW. Read-After-Write. A "true"
dependence. Read a value after it has been written
into a variable.

Anti-dependence - WAR. Write-After-Read. Write a
new value into a variable after the old value has
been read.

Output dependence - WAW. Write-After-Write.
Write a new value into a variable and then later on
write another value into the same variable.

6

O o O Execution Hardware

QuickTime™ and a
 decompressor

are needed to see this picture.

4

7

Exploiting Parallelism at the Data Level

� Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Operating on one element at a time

8

Exploiting Parallelism at the Data Level

� Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Operating on one element at a time

5

9

� Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Exploiting Parallelism at the Data Level (SIMD)

+

Operate on MULTIPLE elements

+ + Single Instruction,

Multiple Data (SIMD)

10

Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store
— 4 single precision FP values (SSE) 4 * 32b

— 2 double precision FP values (SSE2) 2 * 64b

— 16 byte values (SSE2) 16 * 8b

— 8 word values (SSE2) 8 * 16b

— 4 double word values (SSE2) 4 * 32b

— 1 128-bit integer value (SSE2) 1 * 128b

4.0 (32 bits)

+

4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

2.3 (32 bits)1.7 (32 bits)2.0 (32 bits)-1.5 (32 bits)

0.3 (32 bits)5.2 (32 bits)6.0 (32 bits)2.5 (32 bits)

6

11

Is it always that easy?

� Not always… a more challenging example:

unsigned

sum_array(unsigned *array, int length) {

int total = 0;

for (int i = 0 ; i < length ; ++ i) {

total += array[i];

}

return total;

}

� Is there parallelism here?

12

We first need to restructure the code

unsigned
sum_array2(unsigned *array, int length) {

unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}
return total;

}

7

13

Then we can write SIMD code for the hot part

unsigned
sum_array2(unsigned *array, int length) {

unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}
return total;

}

14

Thread level parallelism: Multi-Core Processors

� Two (or more) complete processors, fabricated on the same silicon chip

� Execute instructions from two (or more) programs/threads at same time

#1 #2

IBM Power5

8

15

Multi-Cores are Everywhere

Intel Core Duo in new Macs: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric

multi-core with 9 cores (1 general-purpose, 8

special purpose SIMD processors)

16

Why Multi-cores Now?

� Number of transistors we can put on a chip growing exponentially…

9

17

… and performance growing too…

� But power is growing even faster!!

— Power has become limiting factor in current chips

18

What is a Thread?

� What does Shared Memory imply?

� Machine model

10

19

� What happens if we run a program on a multi-core?

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++i) {
C[i] = A[i] + B[i];
}

}

As programmers, do we care?

#1 #2

20

What if we want a program to run on both processors?

� We have to explicitly tell the machine exactly how to do this

— This is called parallel programming or concurrent programming

� There are many parallel/concurrent programming models

— We will look at a relatively simple one: fork-join parallelism

— In CSE 451, you learn about threads and explicit synchronization

11

21

1.Fork N-1 threads

2.Break work into N pieces (and do it)

3.Join (N-1) threads

void
array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
int i;
for (i = cpu_num ; i < length ; i += N) {
C[i] = A[i] + B[i];

}
join();

}

Fork/Join Logical Example

How good is this with caches?

22

How does this help performance?

� Parallel speedup measures improvement from parallelization:

time for best serial version

time for version with p processors

� What can we realistically expect?

speedup(p) =

12

23

� In general, the whole computation is not (easily) parallelizable

Reason #1: Amdahl’s Law

Serial regions

24

� Suppose a program takes 1 unit of time to execute serially

� A fraction of the program, s, is inherently serial (unparallelizable)

� For example, consider a program that, when executing on one processor, spends

10% of its time in a non-parallelizable region. How much faster will this program

run on a 3-processor system?

� What is the maximum speedup from parallelization?

Reason #1: Amdahl’s Law

New Execution

Time
=

1-s
+ s

P

New Execution
Time

=
.9T

+ .1T =
3

Speedup =

13

25

void
array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
int i;
for (i = cpu_num ; i < length ; i += N) {
C[i] = A[i] + B[i];

}
join();

}

— Forking and joining is not instantaneous

• Involves communicating between processors

• May involve calls into the operating system

— Depends on the implementation

Reason #2: Overhead

New Execution
Time

=
1-s

+ s + overhead(P)
P

26

Programming Explicit Thread-level Parallelism

� As noted previously, the programmer must specify how to parallelize

� But, want path of least effort

� Division of labor between the Human and the Compiler

— Humans: good at expressing parallelism, bad at bookkeeping

— Compilers: bad at finding parallelism, good at bookkeeping

� Want a way to take serial code and say “Do this in parallel!” without:

— Having to manage the synchronization between processors

— Having to know a priori how many processors the system has

— Deciding exactly which processor does what

— Replicate the private state of each thread

� OpenMP: an industry standard set of compiler extensions

— Works very well for programs with structured parallelism.

14

27

void
array_add(int A[], int B[], int C[], int length) {
int i;
for (i =0 ; i < length ; i += 1) { // Without OpenMP
C[i] = A[i] + B[i];

}
}

void
array_add(int A[], int B[], int C[], int length) {
int i;
#pragma omp parallel
for (i =0 ; i < length ; i += 1) { // With OpenMP
C[i] = A[i] + B[i];

}
}

� OpenMP figures out how many threads are available, forks (if necessary),
divides the work among them, and then joins after the loop.

OpenMP

28

OpenMP “hello world” Example

#include <omp.h>

main () {
int nthreads, tid;

/* Fork a team of threads giving them their own copies of
variables */

#pragma omp parallel private(tid)
{
/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and terminate */
}

15

29

Performance Optimization

� Until you are an expert, first write a working version of the program

� Then, and only then, begin tuning, first collecting data, and iterate

— Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

30

� Multi-core is having more than one processor on the same chip.

— Soon most PCs/servers and game consoles will be multi-core

— Results from Moore’s law and power constraint

� Exploiting multi-core requires parallel programming

— Automatically extracting parallelism too hard for compiler, in general.

— But, can have compiler do much of the bookkeeping for us

— OpenMP

� Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, and

then join, continuing with just one thread

— Expect a speedup of less than P on P processors

• Amdahl’s Law: speedup limited by serial portion of program

• Overhead: forking and joining are not free

Summary so Far

16

31

More on Parallelism...

32

Approaches to Parallelism

� Parallel Algorithms

� Parallel Language

� Message passing (low-level)

� Parallelizing compilers

17

33

Parallel Languages

� Fortran 90 - Array language. Triplet notation for array sections.

Operations and intrinsic functions possible on array sections.

� High Performance Fortran (HPF) - Similar to Fortran 90, but includes

data layout specifications to help the compiler generate efficient code.

� ZPL - array-based language at UW. Compiles into C code (highly

portable).

� C* - C extended for parallelism

Object-Oriented

� concurrent Smalltalk,

� threads in Java, Ada, thread libraries for use in C/C++

Functional

� NESL, Multiplisp

� Id & Sisal (more dataflow)

34

Distributed Memory Architecture

� Each Processor has direct access only to its local memory

� Processors are connected via high-speed interconnect

� Data structures must be distributed

� Data exchange is done via explicit processor-to-processor

communication: send/receive messages

� Example Programming Model: Widely used standard: MPI

P0

Communication
Interconnect

...
Memory MemoryMemory

P0 P1 Pn

18

35

Message Passing Interface

MPI is not a language but rather a collection of subroutines and
their arguments.

MPI provides:
� Point-to-point communication

� Collective operations

—Barrier synchronization

—gather/scatter operations

—Broadcast, reductions
� Different communication modes

—Synchronous/asynchronous

—Blocking/non-blocking

—Buffered/unbuffered
� C/C++ and Fortran bindings

http://www.mpi-forum.org

36

Shared Memory Architecture

� Processors have direct access to global memory and I/O
through bus or fast switching network

� Cache Coherency Protocol guarantees consistency
of memory and I/O accesses

� Each processor also has its own memory (cache)

� Data structures are shared in global address space

� Concurrent access to shared memory must be coordinated

� Example Programming Model: OpenMP

P0
Cache
P0

Cache
P1

Cache
Pn

Cache

Global Shared Memory

Shared Bus

...

19

37

OpenMP

� OpenMP: portable shared memory parallelism

� Higher-level API for writing portable multithreaded

applications

� Provides a set of compiler directives and library

routines for parallel application programmers

� API bindings for Fortran, C, and C++

http://www.OpenMP.org

38

Parallelizing
Compiler

OpenMP
program

Performance tuning

Inserts OpenMP
directives

Writing OpenMP Applications

� Program is built with OpenMP-enabled compiler flags

� Programmer explicitly adds OpenMP pragmas

� Fine tuning using OpenMP Profiling and

Performance Analysis Tools

Programmer

20

39

Parallelizing Compilers

Automatically transform a sequential program into a

parallel program.

1. Identify loops whose iterations can be executed in

parallel.

2. Often done in stages.

Q: Which loops can be run in parallel?

Q: How should we distribute the work/data?

