Lecture 25 (Mon & Wed 12/01 & 03/2008)

» HW #4 (optional) - Due Fri Dec 5 during class
« Lab #4 Hardware - Due Fri Dec 5 at 5pm

= Today: Parallelism!

Pipelining vs. Parallel processing

= In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where each
piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single
functional unit

= We will briefly introduce the key ideas behind parallel processing
— instruction level parallelism
— thread-level parallelism

Exploiting Parallelism

Of the computing problems for which performance is important, many
have inherent parallelism

Best example: computer games
— Graphics, physics, sound, Al etc. can be done separately
— Furthermore, there is often parallelism within each of these:
» Each pixel on the screen’s color can be computed independently
» Non-contacting objects can be updated/simulated independently
« Artificial intelligence of non-human entities done independently

Another example: Google queries
— Every query is independent
— Google is read-only!!

Parallelism at the Instruction Level

add $2 <- $3, $4 Dependences?
or $2 <- $2, $4 RAW
lw $6 <- 0($4) WAW
addi $7 <- $6, 0x5 WAR

sub $8 <- $8, $4
When can we reorder instructions?

When should we reorder instructions?

add $2 <- $3, $4

or $5 <- $2, $4 Surperscalar Processors:
Iw $6 <- 0($4) Multiple instructions executing in
sub $8 <- $8, $4 parallel at *same* stage

addi $7 <- $6, 0x5

Data Dependences

Flow dependence - RAW. Read-After-Write. A "true”
dependence. Read a value after it has been written
into a variable.

Anti-dependence - WAR. Write-After-Read. Write a
new value into a variable after the old value has
been read.

Output dependence - WAW. Write-After-Write.
Write a new value into a variable and then later on
write another value into the same variable.

O o O Execution Hardware

Instruction fetch
and decode unit

1
Reservation | | Reservation Reservation || Reservation
station station station station

Functional Floatin
; 9 Load/ [oyt-of-order execute
- -

Comlm\t In-order commit
unit

In-order issue

Exploiting Parallelism at the Data Level

= Consider adding together two arrays:

voi d

array_add(int A[], int B[], int (], int length) {
int i;

for (i =0 ; i <length ; ++ i) {

}C[i] = Ali] + Bli];

}

Exploiting Parallelism at the Data Level

= Consider adding together two arrays:

voi d

array_add(int A[], int B[], int (], int length) {
int i;

for (i =0 ; i <length ; ++ i) {

}qi] = Ai] + Bli];

}

Operating on one element at a time

HENENEEEE

Exploiting Parallelism at the Data Level (SIMD)

= Consider adding together two arrays:

voi d

array_add(int A[], int B[], int (], int length) {
int i;

for (i =0 ; i <length ; ++ i) {

}C[i] = Ali] + Bli];

}

Operate on MULTIPLE elements

Single Instruction,
Multiple Data (SIMD)

Intel SSE/SSE2 as an example of SIMD

o Added new 128 bit registers (XMMO - XMM7), each can store
— 4 single precision FP values (SSE) 4*32b
— 2 double precision FP values (SSE2) 2 * 64b

— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4*32b
— 1 128-bit integer value (SSE2) 1*128b
4.0 (32 hits) 4.0 (32 hits) 3.5 (32 bits) -2.0 (32 bhits)
+ -1.5 (32 bits) 2.0 (32 bits) 1.7 (32 bits) 2.3 (32 bits)
2.5 (32 hits) 6.0 (32 bits) 5.2 (32 bits) 0.3 (32 bits)

Is it always that easy?

= Not always... a more challenging example:

unsi gned
sum array(unsi gned *array, int length) {
int total = 0;
for (int i =0 ; i <length; ++ i) {
total += array[i];
}

return total;

= |s there parallelism here?

We first need to restructure the code

unsi gned
sum array2(unsigned *array, int |length) {
unsi gned total, i;
unsi gned tenp[4] = {0, 0, 0, 0};
for (i =0 ; i <length & ~0x3 ; i += 4) {
tenp[0] += array[i];
tenp[1] += array[i +1];
tenmp[2] += array[i +2];
tenmp[3] += array[i +3];

}
total = tenp[0] + tenp[l] + tenp[2] + tenp[3];
for (; i <length ; ++ i) {
total += array[i];
}

return total;

Then we can write SIMD code for the hot part

unsi gned
sum array2(unsi gned *array, int |length) {
unsi gned total, i;
unsi gned tenp[4] = {0, 0, 0, 0};
for (i =0 ; i <length & ~0x3 ; i += 4) {
temp[0] += array[i];
[1] += array[i +1];
tenp[2] += array[i +2];
tenmp[3] += array[i +3];

total = tenp[0] + tenp[l] + tenp[2] + tenp[3];
for (; i <length ; ++ i) {
total += array[i];

}

return total

Thread level parallelism: Multi-Core Processors

= Two (or more) complete processors, fabricated on the same silicon chip
= Execute instructions from two (or more) programs/threads at same time

IBM Power5

Multi-Cores are Everywhere

| Intel Core Duo in new Macs: 2 x86 processors on same chip

L INte

i Core Duc |

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric
multi-core with 9 cores (1 general-purpose, 8
special purpose SIMD processors)

Why Multi-cores Now?

= Number of transistors we can put on a chip growing exponentially...

transistors
MOORE'S LAW intal® lankum® 2 Procassor 1,000,000,000
Intel® itanim® Processor
100,000,000

Inteln Pentiumf 4 Processor

Inteln Pentiumn Il Procossor

Inteln Pontium® Il Procossor w1 10,000,000

Intelfn Pantium Processor .

Inteld86™ Processor :
1 1,000,000

Intel386™ Processor
- ’ 1 100,000
2T I s ¥ P ; e
10,000
8008 .
1004 &4 e : -
A S s A BRI D S 2] 1,000
1870 1975 1980 1985 1990 1995 2000 2005

... and performance growing too...

Pentium 4
35 (Cedarmill)”
power = perf * 1.75
25 Pentium 4 4
5 (Willamette), -+
g 20
a 7
15
10 Pentium Pro.+
5
485 * Pentium
o .
0 2 4 6 8

Scalar Performance

= But power is growing even faster!!
— Power has become limiting factor in current chips

What is a Thread?

* What does Shared Memory imply?
* Machine model

As programmers, do we care?

= What happens if we run a program on a multi-core?

voi d

array_add(int A[], int B[], int (], int length) {
int i;

for (i =0 ; i <length ; ++i) {

}C[i] = Al + Bli];

}

What if we want a program to run on both processors?

= We have to explicitly tell the machine exactly how to do this
— This is called parallel programming or concurrent programming

= There are many parallel/concurrent programming models
— We will look at a relatively simple one: fork-join parallelism
— In CSE 451, you learn about threads and explicit synchronization

J
— . —
master I
thread N
{ parallel region } {parallel region }

20

Fork/Join Logical Example

1.Fork N-1 threads
2.Break work into N pieces (and do it)

3.Join (N-1) threads

voi d
array_add(int A], int B[], int], int length) {
cpu_num = fork(N-1);

int i
for (i = cpu_num; i <length ; i += N {

}QH = Ali] + Bli];
join();
}
MEEEEEE

B [T T T 11
Memory

o [TTTTT]

How good is this with caches?

21
How does this help performance?
= Parallel speedup measures improvement from parallelization:
speedup(p) time for best serial version
time for version with p processors
*= What can we realistically expect?
A L
— '\ z-'/
o ,
— &
5 ¢
g i
(4h] -
© =
=X
Ty .
1
! p = number of pmcéssnrs
22

11

Reason #1: Amdahl’s Law

In general, the whole computation is not (easily) parallelizable

—

master
thread

{ parallel region }

Serial regions

23

Reason #1: Amdahl’s Law

Suppose a program takes 1 unit of time to execute serially
A fraction of the program, s, is inherently serial (unparallelizable)

-+——— Time on a single processor ———

[s | (1-s) |

| s [d-swp New Execution 1-s
_ ’ =— + s
Tirne on a Time P

-— parallel —-
rmachine

For example, consider a program that, when executing on one processor, spends
10% of its time in a non-parallelizable region. How much faster will this program
run on a 3-processor system?

New Execution _ _.9T + AT = Speedup =

Time 3

What is the maximum speedup from parallelization?

24

12

Reason #2: Overhead

voi d
array_add(int A], int B[], int (], int length) {
cpu_num = fork(N-1);

int i;

for (i = cpu_num; i <length ; i += N {
ail = Ali] + B[il;

}

join()

— Forking and joining is not instantaneous
< Involves communicating between processors
« May involve calls into the operating system
— Depends on the implementation

i 1-s
New E?(ecuhon =—— + s + overhead(P)
Time P

25

Programming Explicit Thread-level Parallelism

As noted previously, the programmer must specify how to parallelize
But, want path of least effort

Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

Want a way to take serial code and say “Do this in parallel!” without:
Having to manage the synchronization between processors
Having to know a priori how many processors the system has
Deciding exactly which processor does what

Replicate the private state of each thread

OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.

26

13

OpenMP

voi d

array_add(int A'], int B[], int], int length) {
int i;
for (i =0 ; i <length ; i += 1) { // Without OpenMP
qi] = Ali] + Bli];
}

}

voi d

array_add(int A], int B[], int], int length) {
int i;
#pragnma onp parall el
for (i =0 ; i <length ; i += 1) { // With OpenMP

}C[i] = Ali] + Bli];

= OpenMP figures out how many threads are available, forks (if necessary),
divides the work among them, and then joins after the loop.

27

OpenMP “hello world” Example

#i ncl ude <onp. h>

main () {
int nthreads, tid;

/* Fork a team of threads giving themtheir own copies of
variabl es */

#pragma onp parallel private(tid)
{
/* Cbtain and print thread id */
tid = onp_get_thread_num();
printf("Hello Wrld fromthread = %\ n", tid);

/* Only master thread does this */

if (tid == 0)
{
nt hreads = onp_get_numthreads();
printf("Nunber of threads = %\ n", nthreads);

} /* Al threads join master thread and terninate */

}

28

14

Performance Optimization

Until you are an expert, first write a working version of the program
Then, and only then, begin tuning, first collecting data, and iterate
— Otherwise, you will likely optimize what doesn’t matter

3. Analyze Data
1. Create a 2. Collect and Identify

Benchmark Data Performance

Problems

5. Is
Froblem 4. Fix the

Fixed? problems in your
code or system

6. Are
perfarmance
requirements

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

29

Summary so Far

Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core
— Results from Moore’s law and power constraint

Exploiting multi-core requires parallel programming

— Automatically extracting parallelism too hard for compiler, in general.
— But, can have compiler do much of the bookkeeping for us

— OpenMP

Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, and
then join, continuing with just one thread

— Expect a speedup of less than P on P processors
« Amdahl’s Law: speedup limited by serial portion of program
« Overhead: forking and joining are not free

30

15

More on Parallelism...

31

Approaches to Parallelism

Parallel Algorithms

Parallel Language

Message passing (low-level)
Parallelizing compilers

32

16

Parallel Languages

= Fortran 90 - Array language. Triplet notation for array sections.
Operations and intrinsic functions possible on array sections.

= High Performance Fortran (HPF) - Similar to Fortran 90, but includes
data layout specifications to help the compiler generate efficient code.

= ZPL - array-based language at UW. Compiles into C code (highly
portable).

= C* - C extended for parallelism

Object-Oriented

= concurrent Smalltalk,

= threads in Java, Ada, thread libraries for use in C/C++
Functional

= NESL, Multiplisp

= |Id & Sisal (more dataflow)

33

Distributed Memory Architecture

Each Processor has direct access only to its local memory
Processors are connected via high-speed interconnect
Data structures must be distributed

Data exchange is done via explicit processor-to-processor
communication: send/receive messages

Example Programming Model: Widely used standard: MPI

4 $ } Communication
Interconngct

17

Message Passing Interface

MPI is not a language but rather a collection of subroutines and
their arguments.

MPI provides:
= Point-to-point communication
= Collective operations

—Barrier synchronization
—gather/scatter operations

—Broadcast, reductions
= Different communication modes

—Synchronous/asynchronous
—Blocking/non-blocking

—Buffered/unbuffered http://www.mpi-forum.org
» C/C++ and Fortran bindings

35

Shared Memory Architecture

= Processors have direct access to global memory and 1/0
through bus or fast switching network

= Cache Coherency Protocol guarantees consistency
of memory and 1/0 accesses

= Each processor also has its own memory (cache)

= Data structures are shared in global address space

= Concurrent access to shared memory must be coordinated
= Example Programming Model: OpenMP

|P0|HP1H
|Cache| [Cache

Shared Bus ! ¢

] Global Shared Memory \

36

18

OpenMP

OpenMP: portable shared memory parallelism

Higher-level API for writing portable multithreaded
applications

Provides a set of compiler directives and library
routines for parallel application programmers

API bindings for Fortran, C, and C++

http://www.OpenMP.org

37

Writing OpenMP Applications

Program is built with OpenMP-enabled compiler flags
Programmer explicitly adds OpenMP pragmas

Fine tuning using OpenMP Profiling and
Performance Analysis Tools

Parallelizing

Compiler Programmer

Inserts OpenMP
directives

Performance funing

OpenMP
program

38

19

Parallelizing Compilers

Automatically transform a sequential program into a
parallel program.

1. ldentify loops whose iterations can be executed in
parallel.

2. Often done in stages.

Q: Which loops can be run in parallel?
Q: How should we distribute the work/data?

39

20

