
1

1

Lecture 22 (Wed 11/19/2008)

• Lab #4 Software Simulation – Due Fri Nov 21 at 5pm

• HW #3 Cache Simulator & code optimization – Due Mon Nov 24 at 5pm

� More Virtual Memory

2

Virtual Memory Review

3

Paging system summary (so far)

� Addresses generated by the CPU are virtual

addresses

� In order to access the memory hierarchy, addresses

must be translated into physical addresses

� That translation is done on a program per program

basis. Each program must have its own page table

—All of the address you use in assembly

programming are virtual addresses

—The virtual address of program A and the same

virtual address in program B will, in general, map

to two different physical addresses

4

Page faults

� When a virtual address has no corresponding

physical address mapping (valid bit is off in the PTE)

we have a page fault

� On a page fault (a page fault is an exception)

— the faulting page must be fetched from disk

(takes milliseconds)

— the whole page (e.g., 4 or 8KB) must be fetched

(amortize the cost of disk access)

—because the program is going to be idle during

that page fetch, the CPU better be used by

another program. On a page fault, the state of

the faulting program is saved and the O.S. takes

over. This is context-switching

2

5

Top level questions for paging systems

� When do we bring a page into main memory?

� Where do we put it?

� How do we know it’s there?

� What happens if main memory is full?

6

Top level answers for paging systems

� When do we bring a page into main memory?

—When there is a page fault for that page, i.e., on

demand

� Where do we put it?

—No restriction; mapping is fully-associative

� How do we know it’s there?

—The corresponding PTE entry has its valid bit on

� What happens if main memory is full

—We have to replace one of the virtual pages

currently mapped. Replacement algorithms can

be sophisticated (see CSE 451) since we have a

context-switch and hence plenty of time

7

Translation Buffers (TLBs)

� To perform virtual to physical address translation we need to

look-up a page table entry

� Since the page table is in memory, need to access memory

P_addr = MEM[Pg_Tab_Base + (V_addr[31:12]<<2)] + V_addr[11:0]

� Too time consuming! 50+ cycles per memory reference!

� Hence we need to cache the page tables

� For that purpose special caches named translation buffers are

part of the memory system

— Also named Translation Lookaside Buffers (TLBs)

8

TLB Organization

� TLB organized as caches

� For each entry in the TLB we’ll have

—a tag to check that it is the right entry

—data which instead of being the contents of

memory locations, like in a cache, will be a page

table entry (PTE)

� TLB’s are smaller than memory caches

—32 to 128 entries

— from fully associative to direct-mapped

—there can be an instruction TLB, a data TLB and

also distinct TLB’s for user and system address

spaces

3

9

TLB organization

OffsetVirtual page number

Indextag

Physical frame number

v dprot

Copy of PTE

10

Virtual Address to Physical Address (Revisited)

ALU

Virtual address

TLB

Physical address

hit

cache

Main memory

miss

hit

miss

11

Address Translation

� At each memory reference the hardware searches the TLB

for the translation

— TLB hit and valid PTE the physical address is passed to

the cache

— TLB miss, either hardware or software (depends on

implementation) searches page table in memory

• If PTE is valid, contents of the PTE loaded in the TLB

and back to step above

� In hardware the TLB miss takes 10-100 cycles

� In software takes up to 100 -1000 cycles

� In either case, no context-switch

— Context-switch takes more cycles than a TLB miss

� If PTE is invalid, we have a page fault (even on a TLB hit)

12

TLB Management

TLBs are caches

— If small (e.g. 32 entries), can be fully associative

— Current trend: larger (about 128 entries); separate TLB’s

for instruction and data; Some part of the TLB reserved

for system

— TLBs are write-back. The only thing that can change is

dirty bit + any other information needed for page

replacement algorithm (see CSE 451)

MIPS 3000 TLB (old)

� 64 entries: fully associative. “Random” replacement; 8

entries used by system

� On TLB miss, we have a trap; software takes over but no

context-switch

4

13

TLB Management (continued)

� At context-switch, the virtual page translations in

the TLB are not valid for the new task

— Invalidate the TLB (set all valid bits to 0)

—Or append a Process ID (PID) number to the tag in

the TLB. When a new task takes over, the O.S.

creates a new PID.

—PID are recycled and entries corresponding to

“old PID” are invalidated

14

Paging systems -- Hardware/software interactions

� Page tables

— Managed by the O.S.

— Address of the start of the page table for a given process

is found in a special register which is part of the state of

the process

— The O.S. has its own page table

— The O.S. knows where the pages are stored on disk

� Page fault

— When a program attempts to access a location which is

part of a page that is not in main memory, we have a

page fault

15

Page fault detection (simplified)

� Page fault is an exception

� Detected by the hardware (invalid bit in PTE either in TLB or

page table)

� To resolve a page fault takes millions of cycles (disk I/O)

— The program that has a page fault must be interrupted

� A page fault occurs in the middle of an instruction

— In order to restart the program later, the state of the

program must be saved and instructions must be

restartable (precise exceptions)

� State consists of all registers, including PC and special

registers (such as the one giving the start of the page table

address)

16

Page fault handler (simplified)

� Page fault exceptions are cleared by an O.S. routine

called the page fault handler which will

—Grab a physical frame from a free list maintained

by the O.S.

—Find out where the faulting page resides on disk

— Initiate a read for that page

—Choose a frame to free (if needed), i.e., run a

replacement algorithm

— If the replaced frame is dirty, initiate a write of

that frame to disk

—Context-switch, i.e., give the CPU to a task ready

to proceed

5

17

Completion of page fault

� When the faulting page has been read from disk (a

few ms later)

—The disk controller will raise an interrupt

(another form of exception)

—The O.S. will take over (context-switch) and

modify the PTE (in particular, make it valid)

—The program that had the page fault is put on the

queue of tasks ready to be run

—Context-switch to the program that was running

before the interrupt occurred

18

Two Extremes in Memory Hierarchy

PARAMETER L1 PAGING SYSTEM

block (page) size 16-64 bytes 4K-8K (also 64K)

miss (fault) time 10-100 cycles
(20-1000 ns)

Millions of cycles
(3-20 ms)

miss (fault) rate 1-10% 0.00001-0.001%

memory size 4K-64K Bytes
(impl. depend.)

Gigabytes
(depends on ISA)

19

Other extreme differences

� Mapping: Restricted (L1) vs. General (Paging)

— Hardware assist for virtual address translation (TLB)

� Miss handler

— Hardware only for caches

— Software only for paging system (context-switch)

— Hardware and/or software for TLB

� Replacement algorithm

— Not that important for caches

— Very important for paging system

� Write policy

— Always write back for paging systems

