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Lecture 17 (Wed 11/05/2008)

• Lab #2 Hardware – Due Fri Nov 7 at 5pm

� Start looking into memory hierarchy - Caches!
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Memory Systems and I/O

� We’ve already seen how to make a fast processor. How can we supply the 
CPU with enough data to keep it busy?

� Part of CS378 focuses on memory and input/output issues, which are 
frequently bottlenecks that limit the performance of a system.

� We’ll start off by looking at memory systems and turn to I/O.

— How caches can dramatically improve the speed of memory accesses.

— How virtual memory provides security and ease of programming

— How processors, memory and peripheral devices can be connected

MemoryProcessor

Input/Output
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Cache introduction

� We’ll answer the following questions.

— What are the challenges of building big, fast memory systems?

— What is a cache?

— Why caches work?  (answer: locality)

— How are caches organized?

• Where do we put things -and- how do we find them?
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Large and fast

� Today’s computers depend upon large and fast storage systems.

— Large storage capacities are needed for many database applications, 
scientific computations with large data sets, video and music, and so 
forth.

— Speed is important to keep up with our pipelined CPUs, which may
access both an instruction and data in the same clock cycle. Things 
get become even worse if we move to a superscalar CPU design.

� So far we’ve assumed our memories can keep up and our CPU can access 
memory twice in one cycle, but as we’ll see that’s a simplification.
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Small or slow

� Unfortunately there is a tradeoff between speed, cost and capacity.

� Fast memory is too expensive for most people to buy a lot of.

� But dynamic memory has a much longer delay than other functional units 
in a datapath. If every lw or sw accessed dynamic memory, we’d have to 
either increase the cycle time or stall frequently.

� Here are rough estimates of some current storage parameters.

LargestCheapestSlowestHard disks

LargeCheapSlowDynamic RAM

SmallestExpensiveFastestStatic RAM

CapacityCostSpeedStorage

20GB-400GB~$0.000510,000,000 cyclesHard disks

128MB-4GB~$0.10100-200 cyclesDynamic RAM

128KB-2MB~$51-10 cyclesStatic RAM

CapacityCost/MBDelayStorage
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Introducing caches

� Wouldn’t it be nice if we could find a balance between 
fast and cheap memory?

� We do this by introducing a cache, which is a small 
amount of fast, expensive memory.

— The cache goes between the processor and the 
slower, dynamic main memory.

— It keeps a copy of the most frequently used data 
from the main memory.

� Memory access speed increases overall, because we’ve 
made the common case faster.

— Reads and writes to the most frequently used 
addresses will be serviced by the cache.

— We only need to access the slower main memory 
for less frequently used data. 

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
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The principle of locality

� It’s usually difficult or impossible to figure out what data will be “most 
frequently accessed” before a program actually runs, which makes it hard 
to know what to store into the small, precious cache memory.

� But in practice, most programs exhibit locality, which the cache can take 
advantage of.

— The principle of temporal locality says that if a program accesses one 
memory address, there is a good chance that it will access the same 
address again.

— The principle of spatial locality says that if a program accesses one 
memory address, there is a good chance that it will also access other 
nearby addresses.
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� The principle of temporal locality says that if a program accesses one 
memory address, there is a good chance that it will access the same 
address again.

� Loops are excellent examples of temporal locality in programs.

— The loop body will be executed many times.

— The computer will need to access those same few locations of the
instruction memory repeatedly.

� For example: 

— Each instruction will be fetched over and over again, once on every 
loop iteration.

Temporal locality in programs

Loop: lw $t0, 0($s1)
add $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $0, Loop
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� Programs often access the same variables over and over, especially within 
loops. Below, sum and i are repeatedly read and written.

� Commonly-accessed variables can sometimes be kept in registers, but this 
is not always possible.

— There are a limited number of registers.

— There are situations where the data must be kept in memory, as is the 
case with shared or dynamically-allocated memory.

Temporal locality in data

sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + f(i);
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� The principle of spatial locality says that if a program accesses one 
memory address, there is a good chance that it will also access other 
nearby addresses.

� Nearly every program exhibits spatial locality, because instructions are 
usually executed in sequence—if we execute an instruction at memory 
location i, then we will probably also execute the next instruction, at 
memory location i+1.

� Code fragments such as loops exhibit both temporal and spatial locality.

Spatial locality in programs

sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)
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� Programs often access data 
that is stored contiguously.

— Arrays, like a in the code 
on the top, are stored in 
memory contiguously.

— The individual fields of a 
record or object like 
employee are also kept 
contiguously in memory.

� Can data have both spatial and 
temporal locality?

Spatial locality in data

employee.name = “Homer Simpson”;
employee.boss = “Mr. Burns”;
employee.age = 45;

sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + a[i];
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How caches take advantage of temporal locality

� The first time the processor reads from an address in 
main memory, a copy of that data is also stored in the 
cache.

— The next time that same address is read, we can 
use the copy of the data in the cache instead of 
accessing the slower dynamic memory.

— So the first read is a little slower than before since 
it goes through both main memory and the cache, 
but subsequent reads are much faster.

� This takes advantage of temporal locality—commonly 
accessed data is stored in the faster cache memory. Lots of

dynamic RAM

A little static
RAM (cache)

CPU
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How caches take advantage of spatial locality

� When the CPU reads location i from main memory, a 
copy of that data is placed in the cache.

� But instead of just copying the contents of location i, 
we can copy several values into the cache at once, 
such as the four bytes from locations i through i + 3.

— If the CPU later does need to read from locations 
i + 1, i + 2 or i + 3, it can access that data from 
the cache and not the slower main memory.

— For example, instead of reading just one array 
element at a time, the cache might actually be 
loading four array elements at once.

� Again, the initial load incurs a performance penalty, 
but we’re gambling on spatial locality and the chance 
that the CPU will need the extra data.

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
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Other kinds of caches

� The idea of caching is not specific to architecture.

— caches are used in many other situations.
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Other kinds of caches

� The general idea behind caches is used in many other situations.

� Networks are probably the best example.

— Networks have relatively high “latency” and low “bandwidth,” so 
repeated data transfers are undesirable.

— Browsers like Netscape and Internet Explorer store your most recently 
accessed web pages on your hard disk.

— Administrators can set up a network-wide cache, and companies like 
Akamai also provide caching services.

� A few other examples:

— Many processors have a “translation lookaside buffer,” which is a 
cache dedicated to virtual memory support.

— Operating systems may store frequently-accessed disk blocks, like 
directories, in main memory... and that data may then in turn be
stored in the CPU cache!
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Definitions: Hits and misses

� A cache hit occurs if the cache contains the data that we’re looking for. 
Hits are good, because the cache can return the data much faster than 
main memory.

� A cache miss occurs if the cache does not contain the requested data. 
This is bad, since the CPU must then wait for the slower main memory.

� There are two basic measurements of cache performance.

— The hit rate is the percentage of memory accesses that are handled 
by the cache.

— The miss rate (1 - hit rate) is the percentage of accesses that must be 
handled by the slower main RAM.

� Typical caches have a hit rate of 95% or higher, so in fact most memory 
accesses will be handled by the cache and will be dramatically faster.

� In future lectures, we’ll talk more about cache performance.
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A simple cache design

� Caches are divided into blocks, which may be of various sizes.

— The number of blocks in a cache is usually a power of 2.

— For now we’ll say that each block contains one byte. (This won’t take 
advantage of spatial locality, but we’ll do that next time.)

� Here is an example cache with eight blocks, each holding one byte.

000

001

010

011

100

101

110

111

Block
index 8-bit data
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Four important questions

1. When we copy a block of data from main memory to 
the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if 
it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To 
load a new block from main RAM, we’d have to replace 
one of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory 
system?

� Questions 1 and 2 are related—we have to know where the data is placed 
if we ever hope to find it again later!
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Where should we put data in the cache?

� A direct-mapped cache is the simplest approach: each main memory 
address maps to exactly one cache block.

� For example, on the right
is a 16-byte main memory
and a 4-byte cache (four
1-byte blocks).

� Memory locations 0, 4, 8
and 12 all map to cache
block 0.

� Addresses 1, 5, 9 and 13
map to cache block 1, etc.

� How can we compute this
mapping?

0

1

2

3

Index

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Memory
Address
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It’s all divisions…

� One way to figure out which cache block a particular memory address 
should go to is to use the mod (remainder) operator.

� If the cache contains 2k

blocks, then the data at
memory address i would
go to cache block index

i mod 2k

� For instance, with the 
four-block cache here,
address 14 would map
to cache block 2.

14 mod 4 = 2

0

1

2

3

Index

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Memory
Address
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…or least-significant bits

� An equivalent way to find the placement of a memory address in the 
cache is to look at the least significant k bits of the address.

� With our four-byte cache
we would inspect the two
least significant bits of
our memory addresses.

� Again, you can see that
address 14 (1110 in binary)
maps to cache block 2
(10 in binary).

� Taking the least k bits of
a binary value is the same
as computing that value
mod 2k.

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

Memory
Address
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� The second question was how to determine whether or not the data
we’re interested in is already stored in the cache.

� If we want to read memory
address i, we can use the
mod trick to determine
which cache block would
contain i.

� But other addresses might
also map to the same cache
block. How can we
distinguish between them?

� For instance, cache block
2 could contain data from
addresses 2, 6, 10 or 14.

How can we find data in the cache?

0

1

2

3

Index

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Memory
Address
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Adding tags

� We need to add tags to the cache, which supply the rest of the address 
bits to let us distinguish between different memory locations that map to 
the same cache block.

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

Tag Data

00

??

01

01
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Adding tags

� We need to add tags to the cache, which supply the rest of the address 
bits to let us distinguish between different memory locations that map to 
the same cache block.

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

Tag Data

00

11

01

01
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Figuring out what’s in the cache

� Now we can tell exactly which addresses of main memory are stored in 
the cache, by concatenating the cache block tags with the block indices.

00

01

10

11

Index Tag Data

00

11

01

01

00 + 00 = 0000

11 + 01 = 1101

01 + 10 = 0110

01 + 11 = 0111

Main memory
address in cache block
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One more detail: the valid bit

� When started, the cache is empty and does not contain valid data.

� We should account for this by adding a valid bit for each cache block.

— When the system is initialized, all the valid bits are set to 0.

— When data is loaded into a particular cache block, the corresponding 
valid bit is set to 1.

� So the cache contains more than just copies of the data in memory; it 
also has bits to help us find data within the cache and verify its validity.

00

01

10

11

Index Tag Data

00

11

01

01

00 + 00 = 0000

Invalid

???

???

Main memory
address in cache block

1

0

0

1

Valid
Bit
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One more detail: the valid bit

� When started, the cache is empty and does not contain valid data.

� We should account for this by adding a valid bit for each cache block.

— When the system is initialized, all the valid bits are set to 0.

— When data is loaded into a particular cache block, the corresponding 
valid bit is set to 1.

� So the cache contains more than just copies of the data in memory; it 
also has bits to help us find data within the cache and verify its validity.

00

01

10

11

Index Tag Data

00

11

01

01

00 + 00 = 0000

Invalid

Invalid

01 + 11 = 0111

Main memory
address in cache block

1

0

0

1

Valid
Bit
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What happens on a cache hit?

� When the CPU tries to read from memory, the address will be sent to a 
cache controller.

— The lowest k bits of the address will index a block in the cache.

— If the block is valid and the tag matches the upper (m - k) bits of the 
m-bit address, then that data will be sent to the CPU.

� Here is a diagram of a 32-bit memory address and a 210-byte cache.

0

1

2

3

...

...

1022

1023

Index Tag DataValidAddress (32 bits)

=

To CPU

Hit

1022

Index

Tag
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What happens on a cache miss

� The delays that we’ve been assuming for memories (e.g., 2ns) are really 
assuming cache hits.

— If our CPU implementations accessed main memory directly, their 
cycle times would have to be much larger. 

— Instead we assume that most memory accesses will be cache hits, 
which allows us to use a shorter cycle time.

� However, a much slower main memory access is needed on a cache miss. 
The simplest thing to do is to stall the pipeline until the data from main 
memory can be fetched (and also copied into the cache).
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Loading a block into the cache

� After data is read from main memory, putting a copy of that data into the 
cache is straightforward.

— The lowest k bits of the address specify a cache block.

— The upper (m - k) address bits are stored in the block’s tag field.

— The data from main memory is stored in the block’s data field.

— The valid bit is set to 1.

0

1

2

3

...

...

...

Index Tag DataValidAddress (32 bits)

1022

Index

Tag

Data

1
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What if the cache fills up?

� Our third question was what to do if we run out of space in our cache, or 
if we need to reuse a block for a different memory address.

� We answered this question implicitly on the last page!

— A miss causes a new block to be loaded into the cache, automatically 
overwriting any previously stored data.

— This is a least recently used replacement policy, which assumes that 
older data is less likely to be requested than newer data.

� We’ll see a few other policies next.
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Summary

� Basic ideas of caches.

— By taking advantage of spatial and temporal locality, we can use a 
small amount of fast but expensive memory to dramatically speed up 
the average memory access time.

— A cache is divided into many blocks, each of which contains a valid 
bit, a tag for matching memory addresses to cache contents, and the 
data itself.

� Next we’ll look at some more advanced cache organizations and see how 
to measure the performance of memory systems.


