
1

1

Lecture 11 (Fri 10/17/2008)

� Lab #1 Hardware – Due Fri Oct 17 – Today! at 5pm

� HW #2 – MIPS programming, due Wed Oct 22

� Midterm – Fri Oct 24

� Today’s objectives:

— Intro to Pipelining

2

A relevant question

� Assuming you’ve got:

— One washer (takes 30 minutes)

— One drier (takes 40 minutes)

— One “folder” (takes 20 minutes)

� It takes 90 minutes to wash, dry, and fold 1 load of laundry.

— How long does 4 loads take?

3

The slow way

� If each load is done sequentially it takes 6 hours

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Time

4

Laundry Pipelining

� Start each load as soon as possible

— Overlap loads

� Pipelined laundry takes 3.5 hours

6 PM 7 8 9 10 11 Midnight

Time

30 40 40 40 40 20

2

5

Pipelining Lessons

� Pipelining doesn’t help latency of
single load, it helps throughput of
entire workload

� Pipeline rate limited by slowest
pipeline stage

� Multiple tasks operating
simultaneously using different
resources

� Potential speedup = Number pipe
stages

� Unbalanced lengths of pipe stages
reduces speedup

� Time to “fill” pipeline and time to
“drain” it reduces speedup

6 PM 7 8 9

Time

30 40 40 40 40 20

6

Pipelining

� Pipelining is a general-purpose efficiency technique

— It is not specific to processors

� Pipelining is used in:

— Assembly lines

— Bucket brigades

— Fast food restaurants

� Pipelining is used in other CS disciplines:

— Networking

— Server software architecture

� Useful to increase throughput in the presence of long latency

— More on that later…

7

Pipelining Processors

� We’ve seen two possible implementations of the MIPS architecture.

— A single-cycle datapath executes each instruction in just one clock
cycle, but the cycle time may be very long.

— A multicycle datapath has much shorter cycle times, but each
instruction requires many cycles to execute.

� Pipelining gives the best of both worlds and is used in just about every
modern processor.

— Cycle times are short so clock rates are high.

— But we can still execute an instruction in about one clock cycle!

Short Cycle TimeCPI = ~1Pipelined Datapath

Short Cycle TimeCPI = ~4Multi-cycle Datapath

Long Cycle TimeCPI = 1Single Cycle Datapath

8

Instruction execution review

� Executing a MIPS instruction can take up to five steps.

� However, as we saw, not all instructions need all five steps.

Store a result in the destination register.WBWriteback

Read or write the data memory.MEMMemory

Compute an R-type result or a branch outcome.EXExecute

Read source registers and generate control signals.IDInstruction Decode

Read an instruction from memory.IFInstruction Fetch

DescriptionNameStep

WBMEMEXIDIFlw

MEMEXIDIFsw

WBEXIDIFR-type

EXIDIFbeq

Steps requiredInstruction

3

9

Single-cycle datapath diagram

4

Shift
left 2

PC Add

Add

0

M
u
x

1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp2ns

2ns
2ns

1ns

� How long does it take to execute each instruction?

10

Single-cycle review

� All five execution steps occur in one clock cycle.

� This means the cycle time must be long enough to accommodate all the
steps of the most complex instruction—a “lw” in our instruction set.

— If the register file has a 1ns latency and the memories and ALU have a
2ns latency, “lw” will require 8ns.

— Thus all instructions will take 8ns to execute.

� Each hardware element can only be used once per clock cycle.

— A “lw” or “sw” must access memory twice (in the IF and MEM stages),
so there are separate instruction and data memories.

— There are multiple adders, since each instruction increments the PC
(IF) and performs another computation (EX). On top of that, branches
also need to compute a target address.

11

Example: Instruction Fetch (IF)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

� Let’s quickly review how lw is executed in the single-cycle datapath.

� We’ll ignore PC incrementing and branching for now.

� In the Instruction Fetch (IF) step, we read the instruction memory.

12

Instruction Decode (ID)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

� The Instruction Decode (ID) step reads the source registers from the
register file.

4

13

Execute (EX)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

� The third step, Execute (EX), computes the effective memory address
from the source register and the instruction’s constant field.

14

Memory (MEM)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

� The Memory (MEM) step involves reading the data memory, from the
address computed by the ALU.

15

Writeback (WB)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

� Finally, in the Writeback (WB) step, the memory value is stored into the
destination register.

16

A bunch of lazy functional units

� Notice that each execution step uses a different functional unit.

� In other words, the main units are idle for most of the 8ns cycle!

— The instruction RAM is used for just 2ns at the start of the cycle.

— Registers are read once in ID (1ns), and written once in WB (1ns).

— The ALU is used for 2ns near the middle of the cycle.

— Reading the data memory only takes 2ns as well.

� That’s a lot of hardware sitting around doing nothing.

5

17

Putting those slackers to work

� We shouldn’t have to wait for the entire instruction to complete before
we can re-use the functional units.

� For example, the instruction memory is free in the Instruction Decode
step as shown below, so...

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Instruction Decode (ID)Idle

18

Decoding and fetching together

� Why don’t we go ahead and fetch the next instruction while we’re
decoding the first one?

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Read
address

Decode 1st instructionFetch 2nd

19

Executing, decoding and fetching

� Similarly, once the first instruction enters its Execute stage, we can go
ahead and decode the second instruction.

� But now the instruction memory is free again, so we can fetch the third
instruction!

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Decode 2ndFetch 3rd Execute 1st

20

Making Pipelining Work

� We’ll make our pipeline 5 stages long, to handle load instructions as they
were handled in the multi-cycle implementation

— Stages are: IF, ID, EX, MEM, and WB

� We want to support executing 5 instructions simultaneously: one in each
stage.

6

21

Break datapath into 5 stages

� Each stage has its own functional units.

� Each stage can execute in 2ns

— Just like the multi-cycle implementation

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

IDIF EXE MEM WB

2ns 2ns 2ns2ns

22

Pipelining Loads

6 PM 7 8 9
Time

30 40 40 40 40 20

WBMEMEXIDIFlw $t4, 20($sp)
WBMEMEXIDIFlw $t3, 16($sp)

WBMEMEXIDIFlw $t2, 12($sp)
WBMEMEXIDIFlw $t1, 8($sp)

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

23

A pipeline diagram

� A pipeline diagram shows the execution of a series of instructions.

— The instruction sequence is shown vertically, from top to bottom.

— Clock cycles are shown horizontally, from left to right.

— Each instruction is divided into its component stages. (We show five
stages for every instruction, which will make the control unit easier.)

� This clearly indicates the overlapping of instructions. For example, there
are three instructions active in the third cycle above.

— The “lw” instruction is in its Execute stage.

— Simultaneously, the “sub” is in its Instruction Decode stage.

— Also, the “and” instruction is just being fetched.

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

24

Pipeline terminology

� The pipeline depth is the number of stages—in this case, five.

� In the first four cycles here, the pipeline is filling, since there are unused
functional units.

� In cycle 5, the pipeline is full. Five instructions are being executed
simultaneously, so all hardware units are in use.

� In cycles 6-9, the pipeline is emptying.

filling full emptying

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

7

25

Pipelining Performance

� Execution time on ideal pipeline:

— time to fill the pipeline + one cycle per instruction

— N instructions -> 4 cycles + N cycles or (2N + 8) ns for 2ns clock period

� Compare with other implementations:

— Single Cycle: N cycles or 8N ns for 8ns clock period

— Multicycle: CPI * N cycles or ~8N ns for 2ns clock period and CPI = ~4

� How much faster is pipelining for N=1000 ?

WBMEMEXIDIFlw $t4, 20($sp)
WBMEMEXIDIFlw $t3, 16($sp)

WBMEMEXIDIFlw $t2, 12($sp)
WBMEMEXIDIFlw $t1, 8($sp)

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

filling

26

Pipeline Datapath: Resource Requirements

WBMEMEXIDIFlw $t4, 20($sp)
WBMEMEXIDIFlw $t3, 16($sp)

WBMEMEXIDIFlw $t2, 12($sp)
WBMEMEXIDIFlw $t1, 8($sp)

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

� We need to perform several operations in the same cycle.

— Increment the PC and add registers at the same time.

— Fetch one instruction while another one reads or writes data.

� Thus, like the single-cycle datapath, a pipelined processor duplicates
hardware elements that are needed several times in the same clock
cycle.

27

Pipelining other instruction types

� R-type instructions only require 4 stages: IF, ID, EX, and WB

— We don’t need the MEM stage

� What happens if we try to pipeline loads with R-type instructions?

WBMEMEXIDIFlw $t1, 8($sp)
WBEXIDIFor $s0, $s1, $s2
WBMEMEXIDIFlw $t0, 4($sp)

WBEXIDIFsub $v0, $a0, $a1
WBEXIDIFadd $sp, $sp, -4

987654321
Clock cycle

28

Important Observation

� Each functional unit can only be used once per instruction

� Each functional unit must be used at the same stage for all instructions.
See the problem if:

— Load uses Register File’s Write Port during its 5th stage

— R-type uses Register File’s Write Port during its 4th stage

WBMEMEXIDIFlw $t1, 8($sp)
WBEXIDIFor $s0, $s1, $s2
WBMEMEXIDIFlw $t0, 4($sp)

WBEXIDIFsub $v0, $a0, $a1
WBEXIDIFadd $sp, $sp, -4

987654321
Clock cycle

8

29

A solution: Insert NOP stages

� Enforce uniformity

— Make all instructions take 5 cycles.

— Make them have the same stages, in the same order

• Some stages will do nothing for some instructions

• Stores and Branches have NOP stages, too…

WBMEMEXIDIFlw $t1, 8($sp)
WBNOPEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFlw $t0, 4($sp)
WBNOPEXIDIFsub $v0, $a0, $a1

WBNOPEXIDIFadd $sp, $sp, -4
987654321

Clock cycle

WBNOPEXIDIFR-type

NOPMEMEXIDIFstore

NOPNOPEXIDIFbranch

30

Summary

� Pipelining attempts to maximize instruction throughput by overlapping
the execution of multiple instructions.

� Pipelining offers amazing speedup.

— In the best case, one instruction finishes on every cycle, and the
speedup is equal to the pipeline depth.

� The pipeline datapath is much like the single-cycle one, but with added
pipeline registers

— Each stage needs is own functional units

� Next time we’ll see the datapath and control, and walk through an
example execution.

