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Lecture 10 (Wed 10/15/2008)

� Lab #1 Hardware – Due Fri Oct 17

� HW #2 – MIPS programming, due Wed Oct 22

� Midterm – Fri Oct 24

� Today’s objectives:

— Microprogramming

— Extending the multi-cycle datapath

— Multi-cycle performance
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The multicycle datapath
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Finite-state machine for the control unit
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Implementing the FSM

� This can be translated into a state table; here are the first two states.

� You can implement this the hard way.

— Represent the current state using flip-flops or a register.

— Find equations for the next state and (control signal) outputs in terms 
of the current state and input (instruction word).

� Or you can use the easy way.

— Stick the whole state table into a memory, like a ROM.

— This would be much easier, since you don’t have to derive equations.
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Pitfalls of state machines

� As mentioned last time, we could translate this state diagram into a state 
table, and then make a logic circuit or stick it into a ROM.

� This works pretty well for our small example, but designing a finite-state 
machine for a larger instruction set is much harder.

— There could be many states in the machine. For example, some MIPS 
instructions need 20 stages to execute in some implementations—each 
of which would be represented by a separate state.

— There could be many paths in the machine. For example, the DEC VAX 
from 1978 had nearly 300 opcodes... that’s a lot of branching!

— There could be many outputs. For instance, the Pentium Pro’s integer 
datapath has 120 control signals, and the floating-point datapath has 
285 control signals. 

— Implementing and maintaining the control unit for processors like 
these would be a nightmare. You’d have to work with large Boolean 
equations or a huge state table.
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Motivation for microprogramming

� Think of the control unit’s state diagram as a little program.

— Each state represents a “command,” or a set of control signals that 
tells the datapath what to do.

— Several commands are executed sequentially.

— “Branches” may be taken depending on the instruction opcode.

— The state machine “loops” by returning to the initial state.

� Why don’t we invent a special language for making the control unit?

— We could devise a more readable, higher-level notation rather than 
dealing directly with binary control signals and state transitions.

— We would design control units by writing “programs” in this language.

— We will depend on a hardware or software translator to convert our 
programs into a circuit for the control unit.
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A good notation is very useful

� Instead of specifying the exact binary values for each control signal, we 
will define a symbolic notation that’s easier to work with.

� As a simple example, we might replace ALUSrcB = 01 with ALUSrcB = 4.

� We can also create symbols that combine several control signals together. 
Instead of

IorD = 0
MemRead = 1
IRWrite = 1

it would be nicer to just say something like

Read PC
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Microinstructions

� For the MIPS multicycle we could define microinstructions with eight 
fields.

— These fields will be filled in symbolically, instead of in binary.

— They determine all the control signals for the datapath. There are 
only 8 fields because some of them specify more than one of the 12 
actual control signals.

— A microinstruction corresponds to one execution stage, or one cycle.

� You can see that in each microinstruction, we can do something with the 
ALU, register file, memory, and program counter units.
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Specifying ALU operations

� ALU control selects the ALU operation.

— Add indicates addition for memory offsets or PC increments.

— Sub performs source register comparisons for “beq”.

— Func denotes the execution of R-type instructions.

� SRC1 is either PC or A, for the ALU’s first operand.

� SRC2, the second ALU operand, can be one of four different values.

— B for R-type instructions and branch comparisons.

— The constant 4 to increment the PC.

— Extend, the sign-extended constant field for _______________.

— Extshift, the sign-extended, shifted constant _______________.

� These correspond to the ALUOp, ALUSrcA and ALUSrcB control signals, 
except we use names like “Add” and not actual bits like “010.”
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Specifying register and memory actions

� Register control selects a register file action.

— Read to read from registers “rs” and “rt” of the instruction word.

— Write ALU writes ALUOut into destination register “rd”.

— Write MDR saves MDR into destination register “rt”.

� Memory chooses the memory unit’s action.

— Read PC reads an instruction from address PC into IR.

— Read ALU reads data from address ALUOut into MDR.

— Write ALU writes register B to address memory ALUOut.
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Specifying PC actions

� PCWrite control determines what happens to the PC.

— ALU sets PC to ALUOut, used in incrementing the PC.

— ALU-Zero writes ALUOut to PC only if the ALU’s Zero condition is true.  
This is used to complete a branch instruction.

� Next determines the next microinstruction to be executed.

— Seq causes the next microinstruction to be executed.

— Fetch returns to the initial instruction fetch stage.

— Dispatch i is similar to a “switch” or “case” statement; it branches 
depending on the actual instruction word.
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The first stage, the microprogramming way

� Below are two lines of microcode to implement the first two multicycle 
execution stages, instruction fetch and register fetch.

� The first line, labelled Fetch, involves several actions.

— Read from memory address PC.

— Use the ALU to compute PC + 4, and store it back in the PC.

— Continue on to the next sequential microinstruction.

Dispatch 1ReadExtshiftPCAdd

SeqALURead PC4PCAddFetch

Next
PCWrite 
controlMemory

Register 
controlSrc2Src1

ALU 
controlLabel



4

13

The second stage

� The second line implements the register fetch stage.

— Read registers rs and rt from the register file.

— Pre-compute PC + (sign-extend(IR[15-0]) << 2) for branches.

— Determine the next microinstruction based on the opcode of the 
current MIPS program instruction.

Dispatch 1ReadExtshiftPCAdd

SeqALURead PC4PCAddFetch

Next
PCWrite 
controlMemory

Register 
controlSrc2Src1

ALU 
controlLabel

switch (opcode) {
case 4: goto BEQ1;
case 0: goto Rtype1;
case 43:
case 35: goto Mem1;

}
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Completing a beq instruction

� Control would transfer to this microinstruction if the opcode was “beq”.

— Compute A-B, to set the ALU’s Zero bit if A=B.

— Update PC with ALUOut (which contains the branch target from the 
previous cycle) if Zero is set.

— The beq is completed, so fetch the next instruction.

� The 1 in the label BEQ1 reminds us that we came here via the first branch 
point (“dispatch table 1”), from the second execution stage.
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Completing an arithmetic instruction

� What if the opcode indicates an R-type instruction?

— The first cycle here performs an operation on registers A and B, based 
on the MIPS instruction’s func field.

— The next stage writes the ALU output to register “rd” from the MIPS 
instruction word.

� We can then go back to the Fetch microinstruction, to fetch and execute 
the next MIPS instruction.
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Completing data transfer instructions

� For both sw and lw instructions, we should first compute the effective 
memory address, A + sign-extend(IR[15-0]).

� Another dispatch or branch distinguishes between stores and loads.

— For sw, we store data (from B) to the effective memory address.

— For lw we copy data from the effective memory address to register rt.

� In either case, we continue on to Fetch after we’re done.
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Next
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Microprogramming vs. programming

� Microinstructions correspond to control signals.

— They describe what is done in a single clock cycle.

— These are the most basic operations available in a processor.

� Microprograms implement higher-level MIPS instructions.

— MIPS assembly language instructions are comparatively complex, each 
possibly requiring multiple clock cycles to execute.

— But each complex MIPS instruction can be implemented with several 
simpler microinstructions.
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Similarities with assembly language

� Microcode is intended to make control unit design easier.

— We defined symbols like Read PC to replace binary control signals. 

— A translator can convert microinstructions into a real control unit.

— The translation is straightforward, because each microinstruction 
corresponds to one set of control values.

� This sounds similar to MIPS assembly language!

— We use mnemonics like lw instead of binary opcodes like 100011.

— MIPS programs must be assembled to produce real machine code.

— Each MIPS instruction corresponds to a 32-bit instruction word.
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Managing complexity

� It looks like all we’ve done is devise a new notation that makes it easier 
to specify control signals.

� That’s exactly right! It’s all about managing complexity.

— Control units are probably the most challenging part of CPU design.

— Large instruction sets require large state machines with many states, 
branches and outputs.

— Control units for multicycle processors are difficult to create and 
maintain.

� Applying programming ideas to hardware design is a useful technique.
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Situations when microprogramming is bad

� One disadvantage of microprograms is that looking up control signals in a 
ROM can be slower than generating them from simplified circuits.

� Sometimes complex instructions implemented in hardware are slower
than equivalent assembly programs written using simpler instructions

— Complex instructions are usually very general, so they can be used 
more often. But this also means they can’t be optimized for specific 
operands or situations.

— Some microprograms just aren’t written very efficiently. But since 
they’re built into the CPU, people are stuck with them (at least until 
the next processor upgrade).



6

21

How microcode is used today

� Modern CISC processors (like x86) use a combination of hardwired logic 
and microcode to balance design effort with performance.

— Control for many simple instructions can be implemented in hardwired 
logic

— Less-used or very complex instructions are microprogrammed to make 
the design easier and more flexible.

� In this way, designers observe the “first law of performance”

— Make the common case fast!
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DEC VAX 11⁄780

� The VAX was designed in 1978 by 
Digital Equipment Corporation.

� It has one of the most complex 
instruction sets ever. (Compiler 
technology wasn’t very good back 
then, and they wanted to make 
assembly programming easier.)

� VMS, the VAX multiuser, cluster-
based operating system, was 
designed by Dave Cutler, who was 
also in charge of Windows NT.

� The VAX had a 32-bit processor, 
seven years before Intel’s 80386.

� The cycle time was 200ns. 5MHz!

� All of this cost $200,000.
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The single-cycle datapath; what is the cycle time?
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Performance of a multicycle implementation

� Let’s assume the following delays for the major functional units.
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Comparing cycle times

� The clock period has to be long enough to allow all of the required work 
to complete within the cycle.

� In the single-cycle datapath, the “required work” was just the complete 
execution of any instruction.

— The longest instruction, lw, requires 13ns (3 + 2 + 3 + 3 + 2).

— So the clock cycle time has to be 13ns, for a 77MHz clock rate.

� For the multicycle datapath, the “required work” is only a single stage.

— The longest delay is 3ns, for both the ALU and the memory.

— So our cycle time has to be 3ns, or a clock rate of 333MHz.

— The register file needs only 2ns, but it must wait an extra 1ns to stay 
synchronized with the other functional units.

� The single-cycle cycle time is limited by the slowest instruction, whereas 
the multicycle cycle time is limited by the slowest functional unit.
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Comparing instruction execution times

� In the single-cycle datapath, each instruction needs an entire clock cycle, 
or 13ns, to execute.

� With the multicycle CPU, different instructions need different numbers of 
clock cycles, and hence different amounts of time.

— A branch needs 3 cycles, or 3 x 3ns = 9ns.

— Arithmetic and sw instructions each require 4 cycles, or 12ns.

— Finally, a lw takes 5 stages, or 15ns.

� We can make some observations about performance already.

— Loads take longer with this multicycle implementation, while all other 
instructions are faster than before.

— So if our program doesn’t have too many loads, then we should see an 
increase in performance.

27

The gcc example

� Let’s assume the gcc instruction mix:

� In a single-cycle datapath, all instructions take 13ns to execute.

� The average execution time for an instruction on the multicycle processor 
works out to 12.09ns.

(48% x 12ns) + (22% x 15ns) + (11% x 12ns) + (19% x 9ns) = 12.09ns

� The multicycle implementation is faster in this case, but not by much. 
The speedup here is only 7.5%.

13ns / 12.09ns = 1.075

FrequencyInstruction

19%Branches

11%Stores

22%Loads

48%Arithmetic
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This CPU is too simple

� Our example instruction set is too simple to see large gains.

— All of our instructions need about the same number of cycles (3-5).

— The benefits would be much greater in a more complex CPU, where 
some instructions require many more stages than others.

� For example, the 80x86 has instructions to push all the registers onto the 
stack in one shot (PUSHA).

— Pushing proceeds sequentially, register by register.

— Implementing this in a single-cycle datapath would be foolish, since 
the instruction would need a large amount of time to store each 
register into memory.

— But the 8086 and VAX are multicycle processors, so these complex
instructions don’t slow down the cycle time or other instructions.

� Also, recall the real discrepancy between memory speed and processor 
frequencies.
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Multicycle Wrap-up

� A multicycle processor splits instruction execution into several stages, 
each of which requires one clock cycle.

— Each instruction can be executed in as few stages as necessary.

� Multicycle control is more complex than the single cycle implementation

— Extra multiplexers and temporary registers are needed.

— The control unit must generate sequences of control signals.

— Microprogramming helps manage the complexity by aggregating 
control signals into groups and using symbolic names

• Just like assembly is easier than machine code

� Next time, we begin our foray into pipelining.

— The multicycle implementation makes a good launch point.


