
1

1

Lecture 9 (10/13/2008)

� Lab #1 Simulation – Due Mon Oct 13 - TODAY

� Lab #1 Hardware – Due Fri Oct 17

� HW #2 – MIPS programming, due Wed Oct 22

� Midterm – Fri Oct 24

2

Controlling the multicycle datapath

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

� Now we talk about how to control this datapath.

2

3

Multicycle control unit

� The control unit is responsible for producing all of the control signals.

� Each instruction requires a sequence of control signals, generated over
multiple clock cycles.

— This implies that we need a state machine.

— The datapath control signals will be outputs of the state machine.

� Different instructions require different sequences of steps.

— This implies the instruction word is an input to the state machine.

— The next state depends upon the exact instruction being executed.

� After we finish executing one instruction, we’ll have to repeat the entire
process again to execute the next instruction.

4

Finite-state machine for the control unit

Instruction fetch
and PC increment Register fetch and

branch computation

Effective address
computation

Memory
read

Register
write

Op = LW/SW

Op = SW

Op = LW

Memory
write

R-type
execution

Op = R-type

R-type
writeback

Branch
completionOp = BEQ

� Each bubble is a state

— Holds the control signals for a single cycle

— Note: All instructions do the same things during the first two cycles

3

5

Stage 1: Instruction Fetch

� Stage 1 includes two actions which use two separate functional units: the
memory and the ALU.

— Fetch the instruction from memory and store it in IR.

IR = Mem[PC]

— Use the ALU to increment the PC by 4.

PC = PC + 4

6

Stage 1: Instruction fetch and PC increment

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

PC = PC + 4

IR = Mem[PC]

4

7

Stage 1 control signals

� Instruction fetch: IR = Mem[PC]

� Increment the PC: PC = PC + 4

� We’ll assume that all control signals not listed are implicitly set to 0.

Save memory contents to instruction register1IRWrite

Use PC as the memory read address0IorD

Read from memory1MemRead

DescriptionValueSignal

Change PC1PCWrite

Update PC from the ALU output0PCSource

Perform additionADDALUOp

Use constant 4 as the second ALU operand01ALUSrcB

Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal

8

Stage 2: Read registers

� Stage 2 is much simpler.

— Read the contents of source registers rs and rt, and store them in the
intermediate registers A and B. (Remember the rs and rt fields come
from the instruction register IR.)

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

5

9

Stage 2: Register File Read

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

10

Stage 2 control signals

� No control signals need to be set for the register reading operations A =
Reg[IR[25-21]] and B = Reg[IR[20-16]].

— IR[25-21] and IR[20-16] are already applied to the register file.

— Registers A and B are already written on every clock cycle.

6

11

Executing Arithmetic Instructions: Stages 3 & 4

� We’ll start with R-type instructions like add $t1, $t1, $t2.

� Stage 3 for an arithmetic instruction is simply ALU computation.

ALUOut = A op B

— A and B are the intermediate registers holding the source operands.

— The ALU operation is determined by the instruction’s “func” field and
could be one of add, sub, and, or, slt.

� Stage 4, the final R-type stage, is to store the ALU result generated in the
previous cycle into the destination register rd.

Reg[IR[15-11]] = ALUOut

12

Stage 3 (R-type): instruction execution

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

Do some computation
on two source registers

Save the result
in ALUOut

7

13

Stage 4 (R-type): write back

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

...and store it to
register “rd”

Take the ALU result
from the last cycle...

14

Stages 3-4 (R-type) control signals

� Stage 3 (execution): ALUOut = A op B

� Stage 4 (writeback): Reg[IR[15-11]] = ALUOut

Do the operation specified in the “func” fieldfuncALUOp

Use B as the second ALU operand00ALUSrcB

Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

ALUOut contains the data to write0MemToReg

Use field rd as the destination register1RegDst

Write to the register file1RegWrite

DescriptionValueSignal

8

15

Executing a beq instruction

� We can execute a branch instruction in three stages or clock cycles.

— But it requires a little cleverness…

— Stage 1 involves instruction fetch and PC increment.

IR = Mem[PC]
PC = PC + 4

— Stage 2 is register fetch and branch target computation.

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

— Stage 3 is the final cycle needed for executing a branch instruction.

• Assuming we have the branch target available

if (A == B) then
PC = branch_target

16

When should we compute the branch target?

� We need the ALU to do the computation.

— When is the ALU not busy?

ALUCycle

3

2

1

9

17

Optimistic execution

� But, we don’t know whether or not the branch is taken in cycle 2!!

� That’s okay…. we can still go ahead and compute the branch target first.
The book calls this optimistic execution.

— The ALU is otherwise free during this clock cycle.

— Nothing is harmed by doing the computation early. If the branch is not
taken, we can just ignore the ALU result.

� This idea is also used in more advanced CPU design techniques.

— Modern CPUs perform branch prediction, which we’ll discuss in a few
weeks in the context of pipelining.

18

Stage 2 Revisited: Compute the branch target

� To Stage 2, we’ll add the computation of the branch target.

— Compute the branch target address by adding the new PC (the original
PC + 4) to the sign-extended, shifted constant from IR.

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

We save the target address in ALUOut for now, since we don’t know
yet if the branch should be taken.

— What about R-type instructions that always go to PC+4 ?

10

19

Stage 2: Register fetch & branch target computation

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

Compute branch
target address

Read source
registers

20

Branch completion

� Stage 3 is the final cycle needed for executing a branch instruction.

if (A == B) then
PC = ALUOut

� Remember that A and B are compared by subtracting and testing for a
result of 0, so we must use the ALU again in this stage.

11

21

Stage 3 (beq): Branch completion

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

Check for equality
of register contents

Use the target address
computed in stage 2

22

Stage 3 (beq) control signals

� Comparison: if (A == B) ...

� Branch: ...then PC = ALUOut

� ALUOut contains the ALU result from the previous cycle, which would be
the branch target. We can write that to the PC, even though the ALU is
doing something different (comparing A and B) during the current cycle.

Subtract, so Zero will be set if A = BSUBALUOp

Use B as the second ALU operand00ALUSrcB

Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Change PC only if Zero is true (i.e., A = B)ZeroPCWrite

Update PC from the ALUOut register1PCSource

DescriptionValueSignal

12

23

Executing a sw instruction

� A store instruction, like sw $a0, 16($sp), also shares the same first two
stages as the other instructions.

— Stage 1: instruction fetch and PC increment.

— Stage 2: register fetch and branch target computation.

� Stage 3 computes the effective memory address using the ALU.

ALUOut = A + sign-extend(IR[15-0])

A contains the base register (like $sp), and IR[15-0] is the 16-bit constant
offset from the instruction word, which is not shifted.

� Stage 4 saves the register contents (here, $a0) into memory.

Mem[ALUOut] = B

Remember that the second source register rt was already read in Stage 2
(and again in Stage 3), and its contents are in intermediate register B.

24

Stage 3 (sw): effective address computation

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

Compute an effective
address and store it

in ALUOut

13

25

Stage 4 (sw): memory write

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

...to store data
from one of the
registers...

Use the effective
address from stage 3...

...into memory.

26

Stages 3-4 (sw) control signals

� Stage 3 (address computation): ALUOut = A + sign-extend(IR[15-0])

� Stage 4 (memory write): Mem[ALUOut] = B

The memory’s “Write data” input always comes from the B intermediate
register, so no selection is needed.

Add and store the resulting address in ALUOut010ALUOp

Use sign-extend(IR[15-0]) as the second operand10ALUSrcB

Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Use ALUOut as the memory address1IorD

Write to the memory1MemWrite

DescriptionValueSignal

14

27

Executing a lw instruction

� Finally, lw is the most complex instruction, requiring five stages.

� The first two are like all the other instructions.

— Stage 1: instruction fetch and PC increment.

— Stage 2: register fetch and branch target computation.

� The third stage is the same as for sw, since we have to compute an
effective memory address in both cases.

— Stage 3: compute the effective memory address.

28

Stages 4-5 (lw): memory read and register write

� Stage 4 is to read from the effective memory address, and to store the
value in the intermediate register MDR (memory data register).

MDR = Mem[ALUOut]

� Stage 5 stores the contents of MDR into the destination register.

Reg[IR[20-16]] = MDR

Remember that the destination register for lw is field rt (bits 20-16) and
not field rd (bits 15-11).

15

29

Stage 4 (lw): memory read

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

...to read data
from memory... Use the effective

address from stage 3...

...into MDR.

30

Stage 5 (lw): register write

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

...and store it
in register rt.

Take MDR...

16

31

Stages 4-5 (lw) control signals

� Stage 4 (memory read): MDR = Mem[ALUOut]

The memory contents will be automatically written to MDR.

� Stage 5 (writeback): Reg[IR[20-16]] = MDR

Use ALUOut as the memory address1IorD

Read from memory1MemRead

DescriptionValueSignal

Write data from MDR (from memory)1MemToReg

Use field rt as the destination register0RegDst

Store new data in the register file1RegWrite

DescriptionValueSignal

32

Finite-state machine for the control unit

IorD = 0
MemRead = 1
IRWrite = 1
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 010
PCSource = 0
PCWrite = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 010

Instruction fetch
and PC increment

Register fetch and
branch computation

Effective address
computation

Memory
read

Register
write

Op = LW/SW

Op = SW

Op = LW

MemWrite = 1
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 010

MemRead = 1
IorD = 1

RegWrite = 1
RegDst = 0

MemToReg = 1

Memory
write

R-type
execution

Op = R-type ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

RegWrite = 1
RegDst = 1

MemToReg = 0

R-type
writeback

Branch
completion

Op = BEQ
ALUSrcA = 1
ALUSrcB = 00
ALUOp = 110
PCWrite = Zero
PCSource = 1

17

33

Implementing the FSM

� This can be translated into a state table; here are the first two states.

� You can implement this the hard way.

— Represent the current state using flip-flops or a register.

— Find equations for the next state and (control signal) outputs in terms
of the current state and input (instruction word).

� Or you can use the easy way.

— Stick the whole state table into a memory, like a ROM.

— This would be much easier, since you don’t have to derive equations.

X0101100XX000X0
Compute
eff addr

LW/S
W

Reg
Fetch

X0101100XX000X0
R-type
execute

R-typeReg
Fetch

X0101100XX000X0
Branch
compl

BEQReg
Fetch

00100100XX10101
Reg
Fetch

XInstr
Fetch

PC
Source

ALU
Op

ALU
SrcB

ALU
SrcA

Reg
Write

MemTo
Reg

Reg
Dst

IR
Write

Mem
Write

Mem
ReadIorD

PC
Write

Next
State

Input
(Op)

Current
State

Output (Control signals)

34

Summary

� Now you know how to build a multicycle controller!

— Each instruction takes several cycles to execute.

— Different instructions require different control signals and a different
number of cycles.

— We have to provide the control signals in the right sequence.

