
1

1

Lecture 8 (10/10/2008)

� Lab #1 Simulation – Due Mon Oct 13

� Lab #1 Hardware – Due Fri Oct 17

� Check the wiki discussion page to see updates

� You can subscribe to CSE378-wiki-updates@cs.washington.edu to be
emailed every time someone updates one of the lab pages. (Or just
check the archives on our web page.)

� HW #2 posted – MIPS programming, due Wed Oct 22

� Midterm – Fri Oct 24

2

Multicycle datapath

� We just saw a single-cycle datapath and control unit for our simple MIPS-
based instruction set.

� A multicycle processor fixes some shortcomings in the single-cycle CPU.

— Faster instructions are not held back by slower ones.

— The clock cycle time can be decreased.

— We don’t have to duplicate any hardware units.

� A multicycle processor requires a somewhat simpler datapath which we’ll
see today, but a more complex control unit that we’ll see later.

2

4

The example add from last time

� Consider the instruction add $s4, $t1, $t2.

� Assume $t1 and $t2 initially contain 1 and 2 respectively.

� Executing this instruction involves several steps.

1. The instruction word is read from the instruction memory, and the
program counter is incremented by 4.

2. The sources $t1 and $t2 are read from the register file.

3. The values 1 and 2 are added by the ALU.

4. The result (3) is stored back into $s4 in the register file.

funcshamtrdrtrsop

10000000000101000101001001000000

5

10100

I [15 - 11]

How the add goes through the datapath

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

4

Shift
left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21] 01001

I [20 - 16] 01010

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

00...01

00...10

00...11

PC+4

3

6

State elements

� In an instruction like add $t1, $t1, $t2, how do we know
$t1 is not updated until after its original value is read?

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

PC

7

The datapath and the clock

1. STEP 1: A new instruction is loaded from memory. The control unit sets
the datapath signals appropriately so that

— registers are read,

— ALU output is generated,

— data memory is read and

— branch target addresses are computed.

2. STEP 2:

— The register file is updated for arithmetic or lw instructions.

— Data memory is written for a sw instruction.

— The PC is updated to point to the next instruction.

� In a single-cycle datapath everything in Step 1 must complete within one
clock cycle.

4

8

The slowest instruction...

� If all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.

� For example, lw $t0, –4($sp) needs 8ns, assuming the delays shown here.

0

M
u
x

1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1

M
u
x

0

Sign
extend

0

M
u
x

1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

8ns

reading the instruction memory 2ns

reading the base register $sp 1ns

computing memory address $sp-4 2ns

reading the data memory 2ns

storing data back to $t0 1ns

9

...determines the clock cycle time

� If we make the cycle time 8ns then every instruction will take 8ns, even
if they don’t need that much time.

� For example, the instruction add $s4, $t1, $t2 really needs just 6ns.

0

M
u
x

1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1

M
u
x

0

Sign
extend

0

M
u
x

1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

6ns

reading the instruction memory 2ns

reading registers $t1 and $t2 1ns

computing $t1 + $t2 2ns

storing the result into $s0 1ns

5

10

How bad is this?

� With these same component delays, a sw instruction would need 7ns, and
beq would need just 5ns.

� Let’s consider the gcc instruction mix from p. 189 of the textbook.

� With a single-cycle datapath, each instruction would require 8ns.

� But if we could execute instructions as fast as possible, the average time
per instruction for gcc would be:

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns

� The single-cycle datapath is about 1.26 times slower!

FrequencyInstruction

19%Branches

11%Stores

22%Loads

48%Arithmetic

11

It gets worse...

� We’ve made very optimistic assumptions about memory latency:

— Main memory accesses on modern machines is >50ns.

• For comparison, an ALU on the Pentium4 takes ~0.3ns.

� Our worst case cycle (loads/stores) includes 2 memory accesses

— A modern single cycle implementation would be stuck at <10Mhz.

— Caches will improve common case access time, not worst case.

� Tying frequency to worst case path violates first law of performance!!

6

12

A multistage approach to instruction execution

� We’ve informally described instructions as executing in several steps.

1. Instruction fetch and PC increment.

2. Reading sources from the register file.

3. Performing an ALU computation.

4. Reading or writing (data) memory.

5. Storing data back to the register file.

� What if we made these stages explicit in the hardware design?

13

Performance benefits

� Each instruction can execute only the stages that are necessary.

— Arithmetic

— Load

— Store

— Branches

� This would mean that instructions complete as soon as possible, instead
of being limited by the slowest instruction.

Proposed execution stages

1. Instruction fetch and PC increment

2. Reading sources from the register file

3. Performing an ALU computation

4. Reading or writing (data) memory

5. Storing data back to the register file

7

14

The clock cycle

� Things are simpler if we assume that each “stage” takes one clock cycle.

— This means instructions will require multiple clock cycles to execute.

— But since a single stage is fairly simple, the cycle time can be low.

� For the proposed execution stages below and the sample datapath delays
shown earlier, each stage needs 2ns at most.

— This accounts for the slowest devices, the ALU and data memory.

— A 2ns clock cycle time corresponds to a 500MHz clock rate!

Proposed execution stages

1. Instruction fetch and PC increment

2. Reading sources from the register file

3. Performing an ALU computation

4. Reading or writing (data) memory

5. Storing data back to the register file

15

Cost benefits

� As an added bonus, we can eliminate some of the extra hardware from
the single-cycle datapath.

— We will restrict ourselves to using each functional unit once per cycle,
just like before.

— But since instructions require multiple cycles, we could reuse some
units in a different cycle during the execution of a single instruction.

� For example, we could use the same ALU:

— to increment the PC (first clock cycle), and

— for arithmetic operations (third clock cycle).

Proposed execution stages

1. Instruction fetch and PC increment

2. Reading sources from the register file

3. Performing an ALU computation

4. Reading or writing (data) memory

5. Storing data back to the register file

8

16

Two extra adders

� Our original single-cycle datapath had an ALU and two adders.

� The arithmetic-logic unit had two responsibilities.

— Doing an operation on two registers for arithmetic instructions.

— Adding a register to a sign-extended constant, to compute effective
addresses for lw and sw instructions.

� One of the extra adders incremented the PC by computing PC + 4.

� The other adder computed branch targets, by adding a sign-extended,
shifted offset to (PC + 4).

17

The extra single-cycle adders

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg

4

Shift
left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

9

18

Our new adder setup

� We can eliminate both extra adders in a multicycle datapath, and instead
use just one ALU, with multiplexers to select the proper inputs.

� A 2-to-1 mux ALUSrcA sets the first ALU input to be the PC or a register.

� A 4-to-1 mux ALUSrcB selects the second ALU input from among:

— the register file (for arithmetic operations),

— a constant 4 (to increment the PC),

— a sign-extended constant (for effective addresses), and

— a sign-extended and shifted constant (for branch targets).

� This permits a single ALU to perform all of the necessary functions.

— Arithmetic operations on two register operands.

— Incrementing the PC.

— Computing effective addresses for lw and sw.

— Adding a sign-extended, shifted offset to (PC + 4) for branches.

19

The multicycle adder setup highlighted

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

Shift
left 2

PC

4

0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

Address

Memory

Mem
Data

Write
data

MemRead

MemWrite

PCWrite

10

20

Eliminating a memory

� Similarly, we can get by with one unified memory, which will store both
program instructions and data. (a Princeton architecture)

� This memory is used in both the instruction fetch and data access stages,
and the address could come from either:

— the PC register (when we’re fetching an instruction), or

— the ALU output (for the effective address of a lw or sw).

� We add another 2-to-1 mux, IorD, to decide whether the memory is being
accessed for instructions or for data.

Proposed execution stages

1. Instruction fetch and PC increment

2. Reading sources from the register file

3. Performing an ALU computation

4. Reading or writing (data) memory

5. Storing data back to the register file

21

The new memory setup highlighted

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

Shift
left 2

PC

4

0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

Address

Memory

Mem
Data

Write
data

MemRead

MemWrite

PCWrite

11

22

Intermediate registers

� Sometimes we need the output of a functional unit in a later clock cycle
during the execution of one instruction.

— The instruction word fetched in stage 1 determines the destination of
the register write in stage 5.

— The ALU result for an address computation in stage 3 is needed as the
memory address for lw or sw in stage 4.

� These outputs will have to be stored in intermediate registers for future
use. Otherwise they would probably be lost by the next clock cycle.

— The instruction read in stage 1 is saved in Instruction register.

— Register file outputs from stage 2 are saved in registers A and B.

— The ALU output will be stored in a register ALUOut.

— Any data fetched from memory in stage 4 is kept in the Memory data
register, also called MDR.

23

The final multicycle datapath

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0

M
u
x

1

RegDst

0

M
u
x

1

MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

ALU
OutB

12

24

Register write control signals

� We have to add a few more control signals to the datapath.

� Since instructions now take a variable number of cycles to execute, we
cannot update the PC on each cycle.

— Instead, a PCWrite signal controls the loading of the PC.

— The instruction register also has a write signal, IRWrite. We need to
keep the instruction word for the duration of its execution, and must
explicitly re-load the instruction register when needed.

� The other intermediate registers, MDR, A, B and ALUOut, will store data
for only one clock cycle at most, and do not need write control signals.

25

Summary

� A single-cycle CPU has two main disadvantages.

— The cycle time is limited by the worst case latency.

— It requires more hardware than necessary.

� A multicycle processor splits instruction execution into several stages.

— Instructions only execute as many stages as required.

— Each stage is relatively simple, so the clock cycle time is reduced.

— Functional units can be reused on different cycles.

� We made several modifications to the single-cycle datapath.

— The two extra adders and one memory were removed.

— Multiplexers were inserted so the ALU and memory can be used for
different purposes in different execution stages.

— New registers are needed to store intermediate results.

� Next time, we’ll look at controlling this datapath.

