
1

1

Lecture 4

� HW #1 due on Monday Oct 6th (to be done individually)

� Today:

— Finish up control flow

— Functions in MIPS

Slides adapted from Josep Torrellas, Craig Zilles, and Howard Huang

2

An Example Function: Factorial

int fact(int n) { fact:
li $t0, 1

int i, f = 1; move $t1,$a0 # set i to n
for (i = n; i > 0; i--) loop:
f = f * i; blez $t1,exit # exit if done
return f; mul $t0,$t0,$t1 # build factorial

} addi $t1, $t1,-1 # i--
j loop

exit:
move $v0,$t0

2

3

Register Correspondences

� $zero $0 Zero

� $at $1 Assembler temp

� $v0-$v1 $2-3 Value (return from function)

� $a0-$a3 $4-7 Argument (to function)

� $t0-$t7 $8-15 Temporaries

� $s0-$s7 $16-23 Saved Temporaries Saved

� $t8-$t9 $24-25 Temporaries

� $k0-$k1 $26-27 Kernel (OS) Registers

� $gp $28 Global Pointer Saved

� $sp $29 Stack Pointer Saved

� $fp $30 Frame Pointer Saved

� $ra $31 Return Address Saved

4

Functions in MIPS

� We’ll talk about the 3 steps in handling function calls:

1. The program’s flow of control must be changed.

2. Arguments and return values are passed back and forth.

3. Local variables can be allocated and destroyed.

� And how they are handled in MIPS:

— New instructions for calling functions.

— Conventions for sharing registers between functions.

— Use of a stack.

3

5

Control flow in C

� Invoking a function changes the
control flow of a program twice.

1. Calling the function

2. Returning from the function

� In this example the main function
calls fact twice, and fact returns
twice—but to different locations
in main.

� Each time fact is called, the CPU
has to remember the appropriate
return address.

� Notice that main itself is also a
function! It is called by the
operating system when you run
the program.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

6

Control flow in MIPS

� MIPS uses the jump-and-link instruction jal to call functions.

— The jal saves the return address (the address of the next instruction)
in the dedicated register $ra, before jumping to the function.

— jal is the only MIPS instruction that can access the value of the
program counter, so it can store the return address PC+4 in $ra.

jal Fact

� To transfer control back to the caller, the function just has to jump to
the address that was stored in $ra.

jr $ra

� Let’s now add the jal and jr instructions that are necessary for our
factorial example.

4

7

Data flow in C

� Functions accept arguments and
produce return values.

� The blue parts of the program
show the actual and formal
arguments of the fact function.

� The purple parts of the code deal
with returning and using a result.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

8

Data flow in MIPS

� MIPS uses the following conventions for function arguments and results.

— Up to four function arguments can be “passed” by placing them in
argument registers $a0-$a3 before calling the function with jal.

— A function can “return” up to two values by placing them in registers
$v0-$v1, before returning via jr.

� These conventions are not enforced by the hardware or assembler, but
programmers agree to them so functions written by different people can
interface with each other.

� Later we’ll talk about handling additional arguments or return values.

5

9

� Assembly language is untyped—there is no distinction between integers,
characters, pointers or other kinds of values.

� It is up to you to “type check” your programs. In particular, make sure
your function arguments and return values are used consistently.

� For example, what happens if somebody passes the address of an integer
(instead of the integer itself) to the fact function?

A note about types

10

The big problem so far

� There is a big problem here!

— The main code uses $t1 to store the result of fact(8).

— But $t1 is also used within the fact function!

� The subsequent call to fact(3) will overwrite the value of fact(8) that was
stored in $t1.

6

11

A: ...
Put B’s args in $a0-$a3
jal B # $ra = A2

A2: ...

B: ...
Put C’s args in $a0-$a3,
erasing B’s args!
jal C # $ra = B2

B2: ...
jr $ra # Where does

this go???

C: ...
jr $ra

Nested functions

� A similar situation happens when
you call a function that then calls
another function.

� Let’s say A calls B, which calls C.

— The arguments for the call to
C would be placed in $a0-$a3,
thus overwriting the original
arguments for B.

— Similarly, jal C overwrites the
return address that was saved
in $ra by the earlier jal B.

12

Spilling registers

� The CPU has a limited number of registers for use by all functions, and
it’s possible that several functions will need the same registers.

� We can keep important registers from being overwritten by a function
call, by saving them before the function executes, and restoring them
after the function completes.

� But there are two important questions.

— Who is responsible for saving registers—the caller or the callee?

— Where exactly are the register contents saved?

7

13

Who saves the registers?

� Who is responsible for saving important registers across function calls?

— The caller knows which registers are important to it and should be
saved.

— The callee knows exactly which registers it will use and potentially
overwrite.

� However, in the typical “black box” programming approach, the caller
and callee do not know anything about each other’s implementation.

— Different functions may be written by different people or companies.

— A function should be able to interface with any client, and different
implementations of the same function should be substitutable.

� So how can two functions cooperate and share registers when they don’t
know anything about each other?

14

The caller could save the registers…

� One possibility is for the caller to
save any important registers that
it needs before making a function
call, and to restore them after.

� But the caller does not know what
registers are actually written by
the function, so it may save more
registers than necessary.

� In the example on the right, frodo
wants to preserve $a0, $a1, $s0
and $s1 from gollum, but gollum
may not even use those registers.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0, $a1, $s0, $s1

jal gollum

Restore registers
$a0, $a1, $s0, $s1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

8

15

…or the callee could save the registers…

� Another possibility is if the callee
saves and restores any registers it
might overwrite.

� For instance, a gollum function
that uses registers $a0, $a2, $s0
and $s2 could save the original
values first, and restore them
before returning.

� But the callee does not know what
registers are important to the
caller, so again it may save more
registers than necessary.

gollum:
Save registers
$a0 $a2 $s0 $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$a0 $a2 $s0 $s2

jr $ra

16

…or they could work together

� MIPS uses conventions again to split the register spilling chores.

� The caller is responsible for saving and restoring any of the following
caller-saved registers that it cares about.

$t0-$t9 $a0-$a3 $v0-$v1

In other words, the callee may freely modify these registers, under the
assumption that the caller already saved them if necessary.

� The callee is responsible for saving and restoring any of the following
callee-saved registers that it uses. (Remember that $ra is “used” by jal.)

$s0-$s7 $ra

Thus the caller may assume these registers are not changed by the callee.

— $ra is tricky; it is saved by a callee who is also a caller.

� Be especially careful when writing nested functions, which act as both a
caller and a callee!

9

17

Register spilling example

� This convention ensures that the caller and callee together save all of the
important registers—frodo only needs to save registers $a0 and $a1, while
gollum only has to save registers $s0 and $s2.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0 and $a1

jal gollum

Restore registers
$a0 and $a1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

gollum:
Save registers
$s0 and $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$s0 and $s2

jr $ra

18

How to fix factorial

� In the factorial example, main (the caller) should save two registers.

— $t1 must be saved before the second call to fact.

— $ra will be implicitly overwritten by the jal instructions.

� But fact (the callee) does not need to save anything. It only writes to
registers $t0, $t1 and $v0, which should have been saved by the caller.

10

19

Where are the registers saved?

� Now we know who is responsible for saving which registers, but we still
need to discuss where those registers are saved.

� It would be nice if each function call had its own private memory area.

— This would prevent other function calls from overwriting our saved
registers—otherwise using memory is no better than using registers.

— We could use this private memory for other purposes too, like storing
local variables.

20

Function calls and stacks

� Notice function calls and returns occur in
a stack-like order: the most recently
called function is the first one to return.

1. Someone calls A

2. A calls B

3. B calls C

4. C returns to B

5. B returns to A

6. A returns

� Here, for example, C must return to B
before B can return to A.

A: ...

jal B

A2: ...

jr $ra

B: ...

jal C

B2: ...

jr $ra

C: ...

jr $ra

1

2

3

4

5

6

11

21

Stacks and function calls

� It’s natural to use a stack for function call storage. A block
of stack space, called a stack frame, can be allocated for
each function call.

— When a function is called, it creates a new frame onto
the stack, which will be used for local storage.

— Before the function returns, it must pop its stack frame,
to restore the stack to its original state.

� The stack frame can be used for several purposes.

— Caller- and callee-save registers can be put in the stack.

— The stack frame can also hold local variables, or extra
arguments and return values.

22

The MIPS stack

� In MIPS machines, part of main memory is
reserved for a stack.

— The stack grows downward in terms of
memory addresses.

— The address of the top element of the
stack is stored (by convention) in the
“stack pointer” register, $sp.

� MIPS does not provide “push” and “pop”
instructions. Instead, they must be done
explicitly by the programmer.

0x7FFFFFFF

0x00000000

$sp

stack

12

23

Pushing elements

� To push elements onto the stack:

— Move the stack pointer $sp down to
make room for the new data.

— Store the elements into the stack.

� For example, to push registers $t1 and $t2
onto the stack:

sub $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

� An equivalent sequence is:

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

� Before and after diagrams of the stack are
shown on the right.

word 2

word 1

$t1

$t2$sp

Before

After

word 2

word 1

$sp

24

Accessing and popping elements

� You can access any element in the stack
(not just the top one) if you know where it
is relative to $sp.

� For example, to retrieve the value of $t1:

lw $s0, 4($sp)

� You can pop, or “erase,” elements simply
by adjusting the stack pointer upwards.

� To pop the value of $t2, yielding the stack
shown at the bottom:

addi $sp, $sp, 4

� Note that the popped data is still present
in memory, but data past the stack pointer
is considered invalid.

word 2

word 1

$t1

$t2$sp

word 2

word 1

$t1

$t2

$sp

13

25

Summary

� Today we focused on implementing function calls in MIPS.

— We call functions using jal, passing arguments in registers $a0-$a3.

— Functions place results in $v0-$v1 and return using jr $ra.

� Managing resources is an important part of function calls.

— To keep important data from being overwritten, registers are saved
according to conventions for caller-save and callee-save registers.

— Each function call uses stack memory for saving registers, storing local
variables and passing extra arguments and return values.

� Assembly programmers must follow many conventions. Nothing prevents a
rogue program from overwriting registers or stack memory used by some
other function.

