
1

11

CS378: Machine Organization and Assembly Language

Lecture 2 - Fall 2008
Review:

The MIPS (a) is a load/store architecture, (b) is a
register-register machine, (c) has an ISA, (d) all of the
above.

What does ISA stand for?

In a machine instruction the registers are called (a)
operands, (b) noops, (c) opcodes.

How many bits are needed to name a MIPS register?

What is the C equivalent to: sub $t0, $t1, $t2 ?
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Announcements

� Homework 0 will be posted today

— on your own, explore SPIM.

� Homework 1 (for a grade, to be done individually) posted over weekend or 
on Monday

— write a simple function in MIPS

— due a week later (Monday Oct 6)

� Lab 1 (to be done in partners) posted next week

� Ruth’s office hours:

M 11:30-12:30, W 1:30-2:20, or by appointment (in cse 360)

� Textbook – revised printing of 3rd edition, or check for bugs.

� Catalyst mailing list - for course staff to send out email to the class

� Catalyst message board – for general discussion among students and 
staff
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Memory review

� Memory sizes are specified much like register files; here is a 2k x n RAM.

� A chip select input CS enables or “disables” the RAM.

� ADRS specifies the memory location to access. 

� WR selects between reading from or writing to the memory.

— To read from memory, WR should be set to 0. OUT will be the n-bit 
value stored at ADRS.

— To write to memory, we set WR = 1. DATA is the n-bit value to store in 
memory.

CS WR Operation

0 x None

1 0 Read selected address

1 1 Write selected address

2k ⋅ n memory

ADRS OUT

DATA

CS

WR

nk

n
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MIPS memory

� MIPS memory is byte-addressable, which means that each memory 
address references an 8-bit quantity.

� The MIPS architecture can support up to 32 address lines.

— This results in a 232 x 8 RAM, which would be 4 GB of memory.

— Not all actual MIPS machines will have this much!

232 ⋅ 8 memory

ADRS OUT

DATA

CS

WR

832
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Loading and storing bytes

� The MIPS instruction set includes dedicated load and store instructions for 
accessing memory

� The main difference is that MIPS uses indexed addressing.

— The address operand specifies a signed constant and a register.

— These values are added to generate the effective address.

� The MIPS “load byte” instruction lb transfers one byte of data from main 
memory to a register. 

lb $t0, 20($a0) # $t0 = Memory[$a0 + 20]

� The “store byte” instruction sb transfers the lowest byte of data from a 
register into main memory. 

sb $t0, 20($a0) # Memory[$a0 + 20] = $t0
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Loading and storing words

� You can also load or store 32-bit quantities—a complete word instead of 
just a byte—with the lw and sw instructions.

lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]

sw $t0, 20($a0) # Memory[$a0 + 20] = $t0

� Most programming languages support several 32-bit data types.

— Integers

— Single-precision floating-point numbers

— Memory addresses, or pointers

� Unless otherwise stated, we’ll assume words are the basic unit of data. 
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� So, to compute with memory-based data, you must:

1. Load the data from memory to the register file.

2. Do the computation, leaving the result in a register.

3. Store that value back to memory if needed.

� For example, let’s say that you wanted to do the same addition, but the 
values were in memory. How can we do the following using MIPS 
assembly language? (A’s address is in $a0, result’s address is in $a1)

char A[4] = {1, 2, 3, 4};
int result;

result = A[0] + A[1] + A[2] + A[3];

Computing with memory
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An array of words

� Remember to be careful with memory addresses when accessing words.

� For instance, assume an array of words begins at address 2000.

— The first array element is at address 2000.

— The second word is at address 2004, not 2001.

� Example, if $a0 contains 2000, then

lw $t0, 0($a0)

accesses the first word of the array, but

lw $t0, 8($a0)

would access the third word of the array, at address 2008.
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Memory alignment

� Keep in mind that memory is byte-addressable, so a 32-bit word actually 
occupies four contiguous locations (bytes) of main memory.

� The MIPS architecture requires words to be aligned in memory; 32-bit 
words must start at an address that is divisible by 4.

— 0, 4, 8 and 12 are valid word addresses.

— 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses.

— Unaligned memory accesses result in a bus error, which you may have 
unfortunately seen before.

� This restriction has relatively little effect on high-level languages and 
compilers, but it makes things easier and faster for the processor.

0 1 2 3 4 5 6 7 8 9 10 11

Word 1 Word 2 Word 3

Address

8-bit data
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Pseudo-instructions

� MIPS assemblers support pseudo-instructions that give the illusion of a 
more expressive instruction set, but are actually translated into one or 
more simpler, “real” instructions.

� For example, you can use the li and move pseudo-instructions:

li $a0, 2000 # Load immediate 2000 into $a0

move $a1, $t0 # Copy $t0 into $a1

� They are probably clearer than their corresponding MIPS instructions:

addi $a0, $0, 2000 # Initialize $a0 to 2000

add $a1, $t0, $0 # Copy $t0 into $a1

� We’ll see lots more pseudo-instructions this semester.

— A complete list of instructions is given in Appendix A of the text.

— Unless otherwise stated, you can always use pseudo-instructions in 
your assignments and on exams.
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Control flow in high-level languages

� The instructions in a program usually execute one after another, but it’s 
often necessary to alter the normal control flow.

� Conditional statements execute only if some test expression is true.

// Find the absolute value of a0
v0 = a0;
if (v0 < 0)

v0 = -v0; // This might not be executed
v1 = v0 + v0;

� Loops cause some statements to be executed many times.

// Sum the elements of a five-element array a0
v0 = 0;
t0 = 0;
while (t0 < 5) {

v0 = v0 + a0[t0]; // These statements will
t0++; // be executed five times

}
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Control-flow graphs

// Find the absolute value of a0
v0 = a0;
if (v0 < 0)

v0 = -v0;
v1 = v0 + v0;

// Sum the elements of
v0 = 0;
t0 = 0;
while (t0 < 5) {

v0 = v0 + a0[t0];
t0++;

}
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� MIPS’s control-flow instructions

j // for unconditional jumps

bne and beq // for conditional branches

slt and slti // set if less than (w/o and w an immediate)

� Now we’ll talk about 

— MIPS’s pseudo branches

— if/else 

— case/switch

MIPS control instructions
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� The MIPS processor only supports two branch instructions, beq and bne, but 
to simplify your life the assembler provides the following other branches: 

blt $t0, $t1, L1 // Branch if $t0 < $t1
ble $t0, $t1, L2 // Branch if $t0 <= $t1
bgt $t0, $t1, L3 // Branch if $t0 > $t1
bge $t0, $t1, L4 // Branch if $t0 >= $t1

� There are also immediate versions of these branches, where the second 
source is a constant instead of a register.

� Later this quarter we’ll see how supporting just beq and bne simplifies the 
processor design. 

Pseudo-branches
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� Most pseudo-branches are implemented using slt. For example, a branch-
if-less-than instruction blt $a0, $a1, Label is translated into the 
following.

slt $at, $a0, $a1 // $at = 1 if $a0 < $a1
bne $at, $0, Label // Branch if $at != 0

� This supports immediate branches, which are also pseudo-instructions. 
For example, blti $a0, 5, Label is translated into two instructions.

slti $at, $a0, 5 // $at = 1if $a0 < 5
bne $at, $0, Label // Branch if $a0 < 5

� All of the pseudo-branches need a register to save the result of slt, even 
though it’s not needed afterwards.

— MIPS assemblers use register $1, or $at, for temporary storage.

— You should be careful in using $at in your own programs, as it may be 
overwritten by assembler-generated code.

Implementing pseudo-branches
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� We can use branch instructions to translate if-then statements into MIPS 
assembly code.

v0 = a0; move $v0 $a0
if (v0 < 0) bge $v0, $0 Label

v0 = -v0; sub $v0, 0, $v0
v1 = v0 + v0;              Label: add $v1, $v0, $v0

� Sometimes it’s easier to invert the original condition.

— In this case, we changed “continue if v0 < 0” to “skip if v0 >= 0”.

— This saves a few instructions in the resulting assembly code.

Translating an if-then statement
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What does this code do?

label: sub $a0, $a0, 1

bne $a0, $zero, label
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Loops

Loop:    j    Loop # goto Loop

for (i = 0; i < 4; i++) {
// stuff

}

add    $t0, $zero, $zero   # i is initialized to 0, $t0 = 0
Loop:   // stuff

addi   $t0, $t0, 1         # i ++
slti   $t1, $t0, 4         # $t1 = 1 if i < 4
bne    $t1, $zero, Loop    # go to Loop if i < 4
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.text
main:

li $a0, 0x1234 ## input = 0x1234
li $t0, 0 ## int count = 0;
li $t1, 0 ## for (int i = 0 

main_loop:
bge $t1, 32, main_exit ## exit loop if i >= 32 

andi $t2, $a0, 1 ## bit = input & 1
beq $t2, $0, main_skip ## skip if bit == 0

addi $t0, $t0, 1 ## count ++

main_skip:
srl $a0, $a0, 1 ## input = input >> 1
add $t1, $t1, 1 ## i ++

j main_loop

main_exit:
jr $ra

� Let’s write a program to count how many bits are set in a 32-bit word.

Control-flow Example

int count = 0;
for (int i = 0 ; i < 32 ; i ++) {

int bit = input & 1;
if (bit != 0) {

count ++;
}
input = input >> 1;

}
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Translating an if-then-else statements

� If there is an else clause, it is the target of the conditional branch

— And the then clause needs a jump over the else clause

// increase the magnitude of v0 by one
if (v0 < 0) bge $v0, $0, E

v0 --; sub $v0, $v0, 1
j L

else
v0 ++; E: add $v0, $v0, 1

v1 = v0; L: move $v1, $v0

— Drawing the control-flow graph can help you out.
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Case/Switch Statement

� Many high-level languages support multi-way branches, e.g.

switch (two_bits) {
case 0:  break;
case 1:  /* fall through */
case 2: count ++; break;
case 3:  count += 2; break;

}

� We could just translate the code to if, thens, and elses:

if ((two_bits == 1) || (two_bits == 2)) {
count ++;

} else if (two_bits == 3) {
count += 2; 

}

� This isn’t very efficient if there are many, many cases.
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Case/Switch Statement

switch (two_bits) {
case 0:  break;
case 1:  /* fall through */
case 2: count ++; break;
case 3:  count += 2; break;

}

� Alternatively, we can:

1. Create an array of jump targets

2. Load the entry indexed by the variable two_bits

3. Jump to that address using the jump register, or jr, instruction

� This is much easier to show than to tell.


