

  “Smashing the Stack” is a type of buffer
overflow attack - overwriting the return
address to redirect control to attack code

  Most common buffer overflow error since it is
the easiest to make and take advantage of

2

  No one would do something like this, right?

3

  First example of a high speed worm
(previously only existed in theory)

  Infected a total of 75,000 hosts in about 30
minutes

  Infected 90% of vulnerable hosts in 10 min
  Exploited a vulnerability in MS SQL Server

Resolution Service, for which a patch had
been available for 6 months

4

  Code randomly generated an IP address and
sent out a copy of itself

  Used UDP - limited by bandwidth, not
network latency (TCP handshake).

  Packet was just 376 bytes long…
  Spread doubled every 8.5 seconds
  Max scanning rate (55 million scans/second)

reached in 3 minutes

5

6

7

8

Executable Code (.text)

Data (.data)

Heap

Stack

Lo
w

er
 M

em
or

y
A

dd
re

ss
es

Assumptions

• Stack grows down

• Stack pointer points to the last
address on the stack

9

void function(int a, int b, int c){
 char buf[16];

}

int main(){
 function(1,2,3);

}

Let us consider how the stack of this program would look:

10

Return Address

Saved registers

Local Variables
(char buf[4])

H
igher M

em
ory A

ddresses

function prolog
sw $ra, -4(sp)
sw $s0, -8(sp)

addi $sp, $sp, -24
Allocates space for stack frame

11

4

ra s0 buf

4 16

Top of m
em

ory
B

ottom
 of stack B

ot
to

m
 o

f m
em

or
y

To
p

of
 st

ac
k

12

void function(char *str){
 char buf [16];
 strcpy(buf, str);

}

int main(){
 char large_string[32];
 int i;
 for (i = 0; i < 31; i++){
 large_string[i] = ‘A’;
 }
 function(large_string);

}

13

When this program is run, it results in an exception

4 4

ra s0 buf

16

Top of m
em

ory
B

ottom
 of stack

B
ot

to
m

 o
f m

em
or

y
To

p
of

 st
ac

k

A
A A A A A A A A

A A A A

The return address is overwritten with ‘AAAA’ (0x41414141)

Function exits and goes to execute instruction at 0x41414141…..

14

Can we take advantage of this to execute code, instead of crashing?
void function(int a, int b, int c){

 char buf[4];
 int *r;
 r = buf + 20;
 (*r) += 8;

}

int main(){
 int x = 0;
 function(1,2,3);
 x = 1;
 printf(“%d\n”, x);

}

15

Top of m
em

ory
B

ottom
 of stack

B
ot

to
m

 o
f m

em
or

y
To

p
of

 st
ac

k

buf + 20

This causes it to skip the assignment of 1 to x, and
prints out 0 for the value of x

4

ra s0 buf

4 16

  We have seen how we can overwrite the
return address of our own program to crash
it or skip a few instructions - basically just
writing a buggy program

  How can these principles be used by an
attacker to hijack the execution of a
program?

  Attacker can use some kind of user/network
input to inject attack code into such a
buffer

16

