
Name: 1

Machine Organization & Assembly Language
CSE 378 Autumn 2007 Midterm Exam

Write your answers on these pages. Additional pages may be attached (with staple) if necessary. Please ensure that
your answers are legible. Please show your work. Write your name at the top of each page.

Total points: 100

1. [10 Points] Calling Conventions.

(a) What are calling conventions?

(b) Why are they necessary?

(c) Give an example of a MIPS calling convention, and say why it is useful.

2

2. [30 points] MIPS Programming
The following C code does a binary search for a value in a sorted array A of integers (each integer is 32 bits in
size, and they are packed together in the array). Translate this C code into MIPS assembly using the template
on the next page. Hint: you may find the BGTZ/BLTZ instructions useful.

Your solution will not be graded for syntax, but you must use the proper opcode and register names. You should
make use of the following assumptions:

• $a0 contains A

• $a1 contains lengthOfA

• $a2 contains value

• $v0 should be used to hold the return value

• your function will be called by some other function.

• you are allowed to use pseudo-instructions.

C version

int binSearch(int *A, int lengthOfA, int value) {
int low = 0;
int high = length - 1;
int mid = 0;

while (low <= high) {
mid = (low + high) / 2;
if (A[mid] > value)

high = mid - 1;
else if (A[mid] < value)

low = mid + 1;
else

return mid; /* found, return array index */
}
return -1; /* not found */

}

MIPS assembly version (next page)

Name: 3

MIPS assembly version

binSearch:
li $t0 <- 0 # low
addi $t1 <- $a0, -1 # high
li $t2 <- 0 # mid

4

3. [15 Points] Datapath.
Taking the single-cycle processor developed in class, we want to add a new instruction jrmi imm16(rs)
which executes a jump to the instruction at the specified address in memory. jrmi is an I-type instruction. The
16-bit immediate (a word offset) and the register rs specify an address via register base + offset (in the same
manner as lw/sw).

(a) Draw the necessary modifications to implement the above instruction on the figure of the single-cycle
data-path provided below.

31

Shift
left 2

PC Add

Add

0

1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

2

MemToRegRead
address

Instruction
memory

Instruction
[310]

I [15 0]

I [25 21]

I [20 16]

I [15 11]

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0

ALUSrc

Result

ZeroALU

ALUOp

4

0

1

2 1

1

0

(b) What is/are the new control signal(s) required to implement jrmi?

Name: 5

4. [20 Points] Datapath Control Signals.

31

Shift
left 2

PC Add

Add

0

1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

2

MemToRegRead
address

Instruction
memory

Instruction
[310]

I [15 0]

I [25 21]

I [20 16]

I [15 11]

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0

ALUSrc

Result

ZeroALU

ALUOp

4

0

1

2 1

1

0

Given the single-cycle datapath above (control signals are marked with dashed lines), fill in the blanks in the
table below. You must either give the control signals (0, 1, X) for a particular MIPS instruction, or give the
MIPS instruction that uses the specified control signals.

Each control signal must be specified as 0, 1 or X (don’t care). Writing a 0 or 1 when an X is more accurate is
not correct.

Opcode RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg PCSrc

nor nor

beq sub ∧ ALU.Zero

2 1 X X 0 0 1 1

6

5. [15 Points] Pipeline Hazards.
Consider the sequence of MIPS instructions below:

add $2 <- $3, $4
or $5 <- $2, $4
lw $6 <- 0($4)
addi $7 <- $6, 0x5
sub $8 <- $8, $4

(a) Draw arrows on the instructions above indicating all the data dependences.

(b) Reorder the instructions into a new schedule that will execute without any stalls on a 5-stage pipelined
processor with forwarding. For reference, you may refer to the pipeline diagram below.

(c) Reorder the instructions into a new schedule that will execute without any stalls on a 5-stage pipelined
processor without forwarding. For reference, you may refer to the pipeline diagram below.

ALU
 DM Reg RegIM

IF ID EX MEM WB

Name: 7

6. [10 Points] Pipelining.
Suppose you have a program that is 1 instruction long. Will it execute faster on a pipelined processor than on a
single-cycle processor (assuming equal processor frequencies)? Why or why not?

