
CSE 378, 06wi � Lecture 4 Main Points
Introduction to the MIPS ISA

January 11, 2006

Instruction Encoding (cont.)

• Branches are encoded in I-format: the �immediate� value is a signed offset, in
units of instructions (4 bytes) from the PC of the instruction following the branch

• j is encoded as a 6-bit opcode and a 26-bit immediate giving the memory address
to set the PC to (the destination instruction of the jump). (How can 26-bits name
a 32-bit address?)

Build (Compile/Assemble/Link) and Run Time Concepts

• The executable file must be relocatable, because we can�t know at build-time
what memory addresses it will be allocated when it runs.

• The executable contains: the program instructions; size and initial values of the
statically allocated variables; a relocation table

• The loader allocates memory and sets register $gp (the global pointer) to point to
the beginning of the static data region

• The compiler/assembler have generated instructions to access (static) variables
stored in main memory using statically known offsets from $gp

• Because branch addressing is PC-relative, and the offsets from the branch to the
target instruction are known at compile/assemble time, they aren�t a problem.

• Because the jump instruction encodes an absolute address, it must be patched by
the loader (once the absolute address of the jump destination is known)

• The value of the label given to a data item in assembly code is an offset (past
$gp). The assembler (linker) decides these offsets at build-time.

• The value of a label on an instruction is its offset (past the first line of code).
• These symbols are just shorthand for their values � a more convenient way for

humans to understand the code. When the program executes, it�s executing
machine instructions, which contain only machine addresses.

• Therefore, ideas like �scope� in programming languages are implemented by the
language/compiler � they don�t mean anything once the program is actually
executing. (The compiler ensures that the code it produces obeys the scope rules
of the language, but the CPU itself doesn�t know about, or care about, those
rules.)

